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PREFACE

This report represents the completion of one phase of the
study of the stability of control systems, a study sponsored by the
National Aeronautics and Space Administration under Grant NsG-490
on research in and application of modern automatic control theory
to nuclear rocket dynamics and control. The report is intended to
be a self-contained unit and therefore repeats some of the work
presented in previous status reports.

Portions of the work were submitted to the Department of
Electrical Engineering at The University of Arizona in partial ful-
fillment of the re.uirements for the degree of Doctor of Philosophy;
this dissertation research was supported in part by the National

Science Foundation under Grant GP-2237.
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ABSTRACT

Z:En this work the Second Method of Liapunov, the Popov frequency
criterion and the matrix-inequality method are used to study the stabil-
ity of certain nonlinear and/or time-varying control_systemi;:)Systems
with more than one nonlinear or time-varying element are considered, and
the type of stability of interest is absolute stability; that 1is, global
asymptotic stability.

-~

The introductory material contains é description of the types
of systems which are to be considered, stabiiity definitions, and sta-
bility theorems of the Second Method;/fFor systems with one nonlinear
element, the Popov criterion and its geometric interpretation are given.
The matrix-inequality method is used to develop the connection between
the Second Method of Liapunov and the Popov criterion, thereby proving
\ T

the Popov criterion.\ he Liapunov function used is of the Lurie type;

that is, a quadratic-;;;m of the state variables plus the integral in-
volving the nonlinearity. (

Systems with a“EEEETe time-varying element are considered next,
and the use of a quadratic Liapunov function without the iategral is
shown to give results equivslent tc those of Bongiorno, Sandberg and
Nerendra end Goldwyn. Inclusion of the integral of the time-varying
elements results in a Liapunov function which is no longer V(x), but
is V(x,t).\ The results of putting bounds on the integral of the time

derivative of the nonlinearity, which appears in dV/dt, are easily

vii
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demcnstrated by use of the matrix-inequality meth6§2> A lengthy example
is used to indicate when this last criterion gives improved results.

(The principal contribution of this wcrk is an extension of the
matrix-inequality method to systems with more than one nonlinear or
time-varying element.i)The matrix-inequality method states that a
scalar function of thé real frequency must always be positive to conclude
that a certain set of algebraic equations had a solution. The new result
is that a matrix which is a function of real frequency must be positive
definite for all real frequencies, if a correspondingly more involved set
of algebraic equations is to have a solutionj[:?he new result allows
stability criteria to be derived for systems with more than one non-
linear or time-varying element, which are analogous to the previous cri-
teria for systems with one nonlinear or time-varying elementT\T

Examples are included to illustrate the use of the Tew criteria,
and a comparison with previous results is made. The case where the sys-
tem equations contaln a zero eigenvalue in their linear part is &also
discussed. An appendix is included in which the criteria described above
is used to extend some results on stabllity c¢f forced systems.

In conclusion, the main contribution of this work is an extension
of the matrix-inequality method to systems with more than one nonlinear-
ity. This results in new ctability criteria which are extensions of
criteria which exist for systems with a single nonlinear and/or time-

varying element,



[ | T T - - .

‘' - N S .

Chapter 1

INTRODUCTION TO THE PROBLEM

J.1 Introduction

The development of modern technology has brought forth many
complicated devices and systems which defy analysis by the conventional
methods of linear control system theory. Not only are there no design
methods avallable for these systems, but even the problem of whether
or not they are stable presents great difficulty. This work considers
the stability of three types of systems which are described by ordinary
differential equations: linear systems with time-varying parameters;
nonlinear systems, especially those with more than one nonlinear ele-
ment; and nonlinear, time-varying systems.

The tools used in studying these systems are the Second Method
of Liapunov, the stability criterion which was developed by the Rumanian
engineer V. M. Popov, and an approach tc Popov's work known as the ma-
trix-inequality method which was developed by the Russian mathematician,

V. A. Yakubovich.

1.2 Historical Beockground

The trend in modern control theory has been away from the fre-
quency domain, block diagram approach and toward what might be considered
the "old-fashioned" differential equation representation of the control
system. The main reasons for this are: first, nonlinear and/or time-
varying systems cannot be handled by the frequency techniques that are

1
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so powerful for linear. non-time-varying systems; and second, the coming
of age of the digital computer has enabled computations to be performed
on large systems of differential equations.

One break in this return to the time domain has been in the
area of stability theory, where the criterion derived by V. M. Popov
(1961) has surprisingly put the study of the stability of a large class
of nonlinear and time-varying systems back into the frequency domain.
However, even here, the derivation starts out with the system represent-
ed by é set of differential equations rather than by a transfer function.
For a system with one nonlinear o; time-varying element, the transfer func-
tion of the linear, time-invariant part of the system is then used in
obtaining a powerful geometric interpretation of the Popov criterion.

However, there is a direct connection between the work of Popov
and the Second Method of Liapunov. By exploiting this connection the
stability criteria developed in this work are dsrived. Liapunov da-
veloped his Direct or Second Method in the late nineteenth century,
but it was not until the early 1940's in Russia and the early 1960's
in the United States that englneers became interested in the theory.
Popov developed his criterion for nonlinear systems in the late 1950's
and early 1960's.

The two main additions to Popov'’s theory are the papers of Yaku-
bovich (1962) and Kalman (1963). Their contributions are indicated at
the appropriate place in the work which follows. The application of the
Popov criterion to time-varying systems was first made by Rozenvasser

(1963).
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There is substantial literature on the subject of Liapunov's
Second Method. The standard references are Liapunov's monograph (1949),
the books of Hahn (1963), and LaSalle and Lefschetz (1961), and the
article by Kalman and Bertram (1960). Besides the previously mentioned
papers on the Popov criterion, there are the books by Aizerman and
Gantmacher (1964) and Lefschetz (1965). The above mentioned books and
papers contain extensive bibliographies.

Recently a great deal of work has been done on the problem
of the stability of time-varying systems. Some work on time-varying
circuits from the energy point of view was done by Darlington (1964),
Rohrer (1964) and Kuh (1965). While of theoretical interest, these
methods are not discussed here since other methods seem to give better
results as far as stability is concerned. A real frequency criterion
has been developed by Bongiorno (1963, 1964) for linear systems and
Sandberg (1964) for nonlinear systems, both for the case of one time-
varying element. Narendra and Goldwyn (1964) get similar results using
the Second Method. These criteria will be shown to be eguivalent to
the Popov criterion.

There are also some theorems from the theory of linear differen-
tial equations with time-varying coefficients which seem to have been
largely ignored in the engineering literature. A complete theory for
linearly differential equations with periodic coefficients exists and
is known as Floquet theory (Coddington and Levinson 1955). Parts of
this theory have been used by various people in developing sufficient
stability criterion for time-varying systems. However, the full use of

the Floquet theory, which can easily be done using a digital computer,
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4
gives necessary and sufficient conditions for stability or, in other
words, the exact stability information. There are also theorems avail-
able for linear systems with variations that go to zero as time increases.

The theorems are due to Bellman (1953) and are discussed in Chapter 2.

1.3 Organization of the Work

The second chapter 1s essentially a background chapter in which
the systems‘to be treated are described, and their stability 1is discussed.
First there is a mathematical description of the general system under
consideration, and then the various special cases of this general case
are discussed. Then there are the definitions of the various types of
stability which are needed and a discussion of absolute stability. Bell-
man®s theorems on almost constant, linear, time-varying systems are tﬁen
presented and their use discussed. Finally some theorems on the Second
Method of Liapunov are given. There is a discussion of the difficulties
involved in using the Second Method which indicates how the Popov cri-
terion can help.

The third chapter introduces Popov’s work for systems with one
nonlinear element and includes a geometric interpretation of the results.
There is a statement and proof of a lemma which is the heart of Yakubo-
vich's matrix-inequality method. This is then used to show the
connection between the Second Method and the Popov criterion.

Chapter 4 is devoted to systems with one time-varying element,
either linear or nonlinear. The use of the Popov stability criterion
for this type of system is shown to be valid, and the connection of the

Popov criterion with the works of Bongiorno, Sandberg, and Narendra and
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Goldwyn is given. This results in more geometric interpretations of the
various criteria. The chapter concludes with an extension of the pre-
vious work due to Rekasius and Rowland (1965).

Chapter 5 contains most of the original contributions of this
work. The extension of the previous work to systems with more than one
nonlinear element is given. This requires extending the lemma of Chap-
ter 3 from a scalar case to a matrix case. This is then used for time-
varying systems to extend the result of Rekasius and Rowland to the case
where more than one elcment is time-varying. There is also an extension
of some work due to Letov (1961) in which he discusses the stability of
systems with two actuators.

Chapter 6 contains conclusions and suggestions for further re-
search. An appendix 1is included which presents an application of the
previous work to forced systems, thereby extending the work of Yakubo-

vich (1964) on nonlincar, forced systems.

1.4 Notation

Due to the large amount of different quantities involved in the
mathematical derivations, it is necessary to use a mixture of the Greek
and English alphabets. Capital English letters, such as A, B, P, and
Greek letters with a bar over them, such as E, are used to represent ma-
trices. The exceptions to this are V(x), which is used as the Liapunov
function; W(x) which is used in conjunction with V(x, t) in Chapter 2;
and G(s) or G(ju) and W(w), which are the transfer function and modified
transfer function of the linear part of a nonlinear system with one non-

linear element. Small English letters which are underlined are vectors
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or column matrices, e.g., ¢, b, x. Small Greek and English letters,

subscripted or not, are scalars, such as, 7, P1r Y1, X
The following are notations wused in connection with matrix

* is the conjugate-

operations. A" is the transpose of the matrix A. A
transpose or adjoint of the matrix A. HeA is the Hermitian part of A
and equals %(A + A*). The identity matrix is denoted by I. The nota-
tion A > 0 means that A is positive definite. Saying that A is a sta-

ble matrix means that all the eigenvalues of A are in the left half

plane.
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Chapter 2

SYSTEM REPRESENTATION AND STABILITY

2.1 1Introduction

The purpose of this chapter is threefold. First, the classes
of systems which are under consideration are discussed, then the sta-
bility of such systems is defined, and finally pertinent stability
theorems are presented.

The seccend section begins with a discussion of the general
nth order system with m nonlinear, time~varying elements. The various
special cases of the general system are then given, that is, the
linear, time-varying case, the single nonlinearity case, and the single
nonlinearity with a zero eigenvalue in the linear part of the system.

In the third section the different kinds of stability which are
needed are defined. Such stability concepts as global stability, asymp-
totic stability, uniform statility, and absolute stability are discuss-
ed. Then, in the fourth section, the stability of a special class of
linear, time-varying systems known as 'almost constant' systems is
discussed. The theorems presented for this class of systems are due
to Bellman (1953).

The last section presents stability theorems of the Second
Method of Liapunov. The difficulties encountered in applying the
Second Method are discussed, especially in regard to time-varying
systems. This leads into the Popov criterion which is presented in

Chapter 3.
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2.2 System Representation

Many complex systems, such as systems with many control actua-

tors, can be described by a matrix set of equations of the form

X = Ax + Bu
u=- _f_(g_:t)y f(_Q;t) = Q (2-1)
g=2C'x

where A is a constant, n by n matrix with all its eigenvalues in the
left-half plane (such a matrix is referred to as a stable matrix), B
and C are n by m matrices, x is a n-dimensional state vector, u is the

m-dimensional control vector, and

f1(01;:;-
f2(02,t)
£(o,t) =
fmiom,t)
where 0 < f;(0j,t)/o; < k; . It is assumed that the rank of B is egqual

to the dimension of the control vector u. If this is not true, then one
can always reduce the numter of control variables by means of the proper
linear transformations until it is true (Melsa 1965, ch. 7).

The restriction of the Fi(aijt) to the cector [b, ki] is no real
restriction since any system of the same type, but with some nonlinear-
ity gy(o;,t) such that k,; < gy(oy,t)/o; < kpy, can be put into the

proper form by the substitution fi(di,t) = gi(ci,t) - k,j04. As usual

the square brackets are used to indicate the closed interval. The
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half-open interval 0 < f (oj)/0f < ki 1is indicated by (O,Ri]-

A special case of the general system is the linear, time-vary-
ing case. The equations are the same except that now the vector u is
given by

u= - F(t)g ’

where F(t) = diag (fl(t), coey £(8)), 0 < fi(t) < ki. Putting the ex-
pression for o into this equation and then putting u into the differen-

tial equation results in the linear, time-varying matrix equation
x = (A - BF(t) C") x (2-2)

The stability of this equation in the special case that F(t) approaches
the zero matrix as t approaches infinity 1is discussed in section five

of this chapter.
Another very important case of the general system (2-1) is the
case where m = 1, that is, the single nonlinear and/or time-varying

element system. Repeating the system equations for this case gives

X = Ax + bu
u=- f(o,t), 0 < f(o,t)/o <k (2-3)
o=c"'x £(0,t) =0

This is just the differential equation of the familiar
control system, Fig. 1. The transfer function of this system in terms
of the above matrices can be calculated as follows. Take the Laplace

transform of the differential equation in (2-3). The result is

sx(s) = A x(s) + bu(s)
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Fig.

1.

4 - ﬁ G(s) .

f(opt) L

n-th Order System with One Nonlinearity.

o and u Variables Defined.

10



N TEE T I O e e s e e .

L] G Tl T e

11
where the initial conditions are assumed to be zero as usual. Solve

this equation for x(s).
(sT - ) x(s) = b u(s)
x(s) = (sI - &)1 b u(s)

Substitute this equation into the equation for o(s). The result is
o(s) = c'x(s) = c'(sI - &)1 b u(s)

The transfer function is given by the ratio of o(s)/u(s).

Ty = 6(s) = cf(sT - M 1b (2-4)

The block diagram of this system is given in Fig. 1.

Another important class of systems with one nonlinearity is the
case of systems with a pure integration in the open loop system. The
equations are similar to (2-3) except that the A matrix has one zero
eigenvalue and all its other eigenvalues are in the left-half plane.
When this is true, the dimension of the A matrix can be reduced by one
by means of suitable linear transformations, and the zero eigenvalue
equation is removed from the set of equations given in matrix form. The

resulting set of equations is

Y =4 y+hu

u = -f(o)
(2-5)

¢ = £(c)

'
o= 1" YE
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Again the transfer function of this set of equations can be found and
it is

)b, +Y (2-6)

G(s) = ¢! (sI - A
(=) El (s 1 - s

= Y
or G(s) = Gl(S) + s

One possible block diagram of this transfer function is given in Fig.
2. 1If the block diagram is given and the system under consideration
has a pole at the origin, the proper state variables for writing the
differential equation in the form of (2-5) can be obtained by first
breaking up the block diagram as shown in Fig. 2. It can be seen from
this that the quantity y is actually the gain constant of the system
and therefore must be positive.

In identifying the types of systems in the single nonlinearity
case, the terminology of Aizerman and Gantmacher (1964) is followed, and
the case of the A matrix with no zero or pure imaginary eigenvalues 1is
called the principal case. Other cases are called particular cases, and,
when the A matrix has one zero and no imaginary eigenvalues, it 1s called
the simplest particular case. Alsc, in the particular case the non-
linear sector must be 0 < f(o,t)/o < k, that is, f(o)/o is not allowed
to be zero. If f(o)/o is allowed to be zero, then the integration term
of the system would just integrate without any feedback and the system

would be unstable.

2.3 Stability Definitions

It is assumed that the only singular point of (2-1) is the

origin so that x = 0 is a point solution of the equation. Then the
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f(a)
o
Fig. 2. Block Diagram Defining Variables for

the Simplest Particular Case.
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stability of (2-1) is defined as the stability of the solution x = 0

Definition 2-1: The null solution of the system (2-1) is said

to be Liapunov stable (or just stable) at t = t_, provided that
for an arbitrary positive € > 0 there is a & = &(-, t,) such
that whenever [x(tg)| < & , the inequality |x(x(ty), tg, t)| < ¢
1s satisfied for all t > tg

Definition 2-2: The null solution of the system (2-1) is said to
be asymptotically stable if it is stable, and if the limit as t
approaches infinity of x(x(tg), to , t) equals zero.

Some other stability concepts are also needed. If the quantity
8 appearing in Definition 2-1 does not depend on ty, then the system is
uniformly stable. If the system is asymptotically stable for all x(t,)
in the entire state space, then the system is globally, asymptotically
stable. Kalman and Bertram (1960) give the following as the conditions
for uniform, global, asymptotic stability

Definition 2-3: The equilibrium state x = 0 is globally, uniformly

asymptotically stable if

(a) it is uniformly stable

(b) it is uniformly bounded, i.e., given any € > O there is some
8(<) such that |x(ty)| <« implies |x(x(tg), to, t)] <&
for all t > tq.

(c) every motion converges to x = 0 as t approaches infinity
uniformly in ty and |x(ty)| <~ , when ¢ is fixed but
arbitrarily large; i.e., given any € > 0 and ® > 0 there is
some T(F,r) such that |x(tg)i < implies |x(x(t.), to, t)] <&
for all t > t, + T.

Also, if the system is globally, asymptotically stable for any fi(oi) in

then the system is absolutely stable. The absolute

stability of the time-varying system is defined as uniform, global

asymptotic stability for any fi(ci,t) in the sector [O,ki]. In what

is to follow the concept of absolutely stable systems plays a large part.
There have been some objections to trying to find absolute

stability, It can be said that one is not really interested in absolute
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stability since systems don't operate in the entire state space, so that
better results should be forthcoming if an operating region about the
origin is considered, and then asymptotic stability is shown in that
region. An answer to this is the fact that just because absolute sta-
bility can be shown for a given differential equation does not mean that
the system that the equation represents is absolutely stable. It is the

differential equation which is chosen to model a given system which is

only valid in some region of the state space, and not the stability
properties of that equation.

One other objection is that absolute stability puts no restric-
tion on the slopes of the nonlinearity, as all that is required is that
it remain in the sector. If the slope of the nonlinearity is restrict-
ed, perhaps some better answers would result in many cases. This is
actually a current research area with the results of Brockett and Wil-
lems (1965) being about the only indication of success in this area.

Before the stability theorems of the Second Method of Liapunov
are given, some stability theorems of a special class of linear time
varying systems, called "almost constant’ systems, are discussed. These
theorems have largely been ignored in the engineering literature and are

included for completeness.

2.4 The Stability of Almost Constant Systems

In his book on the stability theory of differential equations,

Bellman (1953) presents some theorems on a class of linear, time-varying

systems which he calls "almost constant'". The system is represented by

the equation é = A(t) x, where the terminology "almost constant' comes

!
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from the condition that the limit as t approaches infinity of A(t) equals

a constant matrix A. This equation can be a special case of (2-2).

Writing (2-2) as
x = (A+ B(t)Hx (2-7)

where
lim B(t) = 0
to
puts the equation in the proper form to apply the theorems.
Two theorems for this type of system are now stated without
proof; the proof is in Bellman’s book.
Theorem 2-1: 1If all solutions of y = Ay, where A is a constant

matrix, are bounded as t approaches infinity, the same is true
of the solutions of (2-7) provided that

oo
[ [B(t)| dt < o
to
Theorem 2-2: If all solutions of i = Ay approach zero as t
approaches infinity, the same is true for the solutions of (2-7)
provided that !B(t)! <c for t >t , where ¢ is a constant
which depends on A.

Although these theorems deal with a large class of linear
systems, they may lead to trouble in engineering work unless care is
taken in their application. The problem is that although the linear
system is eventually stable, it may have solutions which grow to very
large values before finally approaching zero. When this is the case,

the linear model which gives the equations may no longer be valid, and

the physical system could be unstable.
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If the linear wmodel is no longer valid, then Theorems 2-1 and
2-2 are not valid, and a nonlinear model of the system along with the
stability theorems of the Second Method of Liapunov must be used.

These stability theorems are presented next.

2.5 Stability Theorems of the Second Method of Liapunov

Before stating some stability theorems of the Second Method of
Liapunov, a few definitions need to be made. These definitions concern
real, scalar functions of the state x and the time t.

Definition 2-4: A real scalar function V(x) is called positive
definite (positive semidefinite) if in a neighborhood of the
origin V(x) > 0 (V(x) > 0) and V(0) = 0.

Definition 2-5: A real scalar function V(x,t) is called positive
definite in a region of the origin if

V(Z{_J t) > wl(ﬁ)
and
v(,t) =0

where Wl(ﬁ) is positive definite.

Definition 2-6: A real scalar function V(x,t) is called negative
definite if -V(x,t) is positive definite.

be stated

Theorem 2-3: If for t > t, there exists a real scalar function
V(x,t) in the neightborhood S of the origin, V(x,t) being con-
tinuous and possessing continuous first partial derivatives with
respect to x; and t, and satisfying

1) V(3,t) is positive definite in § for t > tq

2) V is not positive (i.e., negative semi- definite) in S for
t>t

then the trivial solution x = 0 of (2-1) is stable (Liapunov

stable).
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Theorem 2-4: If conditions 1) and 2) of the above theorem are

chauged to

3) V(x,t) is positive definite and also dominated for t > t,
by another Wp(x) (i.e., Wi(x) < V(x.t) < Wa(x))

4) V is negative definite in S for t - t,

then the trivial solution x =0 of (2-1) is asymptotically

stable.

Theorem 2-5: If in the above two theorems S is the entire state

space, and in addition
lim V(x,t) = =

X —> ©
uniformly on t, t > t, , then the trivial solution is, respective-
ly, globally, uniformly stable and globally, uniformly, asymptotical-

ly stable.

For the casc of time invariant systems there is an extension
of the above theorem which states that asymptotic stability can be conr-
cluded for V(ﬁ) < 0 provided that V(x) is not identically zero for any
solution other than x = 0 . One of the problems with time-varying sys-

tems is the fact that this extension is not valid, therefore requiring

a definite V

One of t e main factors holding back the application of the
Second Method is the lack of methods for finding the best V-function for
a given system. This is especially true for the case of time-varying
systems. There does not scem to be any method available which can be
used to generate Liapunov functions which have an explicit dependence
on time. Therefore, either V-functions are generated which have no de-
pendence on time or specific V-functions are picked.

One class of V-functions which has received much zttention is
the Lurie type, a positive definite quadratic form of the state vari-
ables plus integrals of the nonlinear terms. The V-functions are posi-

tive definite in the entire state space and V can be put in a form
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such that, if certain conditions are satisfied, it must be negative
definite, and absolute stability is concluded. For systems with one
nonlinear element these certain conditions are the Popov frequency
criterion. For the case of the single nonlinearity system the Popov
criterion gives necessary and sufficient conditions for the existence
of this type of V-function. The fact that Popov’s condition gives
necessary and sufficient conditions for the existence of the V-function
of the Lurie type in the simplest particular case has been known since
Yakubovich's work (1962). However, recently Yakubovich (1964b) has
shown that this is true for the principal case also.

As will be seen in Chapter 3, the advantage of the Popov cri-
terion over the straightforward application of the Second Method is
the ease with which it is used. Another advantage is that since it is
a necessary and sufficient condition for the existence of a V-function
of the proper form, it actually gives the results which are equivalent
to finding the best V-function of that specific type (Aizerman and
Gantmacher 1964, Appendix). This is important in time-varying systems,
as can be seen by considering just the simple quadratic form of the
state variables as the V-function. The use of the Popov criterion
gives the test quadratic V(x) for a given system. If the Popov cri-
terion did not exist, this best V(x) could only be found by a long and
complicated search procedure, since V is a function of the system
parameters as well as the particular quadratic form chosen for V(x).

For high order systems a considerable amount of work is required to

do this.
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Another advantage of using the Popov criterion in conjunction
with the Lurie type V-function is that V and 6 do not have to be
tested for definiteness, as the satisfaction of the Popov criterion
guarantees that V is positive definite and V is ncegative definite. In
trying to find Liapunov functions for high order systems by other tech-
niques, one of the main difficulties is that there is no easy way of
testing high order non-quadratic functions for definiteness.

Chapter 3 presents an extensive discussion of the Popov criterion
and its relationship with Lurie type V-functions. The purpose of Chap-
ter 3 is to develop a background from which the stability of system (2-1)

can be studied,.
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Chapter 3

THE STABILITY CRITERION OF POPOV

3.1 Introduction

In this chapter the stability criterion which was formulated by
the Rumanian engineer V. M. Popov is presented. Popov's work is con-
cerned mainly with the absolute stability of the single, time-invariant,
nonlinearity type of system given by (2-3). Only this case is discussed
in this chapter with extensions to the time varying case to appear in
the next chapter.

There has been much research in the last fifteen years on the
absolute stability problem. This research was initiated by the Russian
Lurie, and it concerns finding sufficient conditions for the stability
of (2-2) by using a Liapunov function which is a quadratic form of all
the state variables plus an integral of the nonlinearity. The type of
Liapunov function is sometimes referred to as the Lurie type.

In the late 1950's Popov began working on frequency domain cri-
teria for nonlinear systems. He published his main paper in 1961, and,
in a short time, Yakubovich (1962,1964b) and Kalman (1963) completed
Popov's work in an important way. The result is that the Popov cri-
terion gives necessary and sufficient conditions for the existence of
a Liapunov function V of the Lurie type, which insures the absolute

stability of the system.

21
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The main advantage of the Popov criterion over the Liapunov
function method is that it can be interpreted graphically in a manner
which requires just the polar plot of the amplitude and phase of a
modified frequency function. This function is obtained by slightly
modifying the system transfer function. Therefore, the differential
equations of the system do not actually have to be known, and, what is
even more important, high order systems can be handled as easily as
low order.

The chapter has two main sections. Section 3.2 contains a
statement of the Popov stability criterion and develops its geometric
interpretation. In the last section the relationship between the Popov
criterion and the Second Method of Liapunov is given. This is done by
means of a lemma which is basically the matrix-inequality method of
Yakubovich. Both the principal case (2-3) and the simplest particular

case (2-5) are considered.

3.2 The Popov Criterion

T a8 o~ -
il LillLd dCoiL

ion t
geometric interpretation of it is given. The systems considered are the
principal case and the simplest particular case of the class of systems

with one time-invariant nonlinearity. For convenience the equations of

these systems are repeated. The principal case is

I -

= Ax + bu

= -f(g), 0 < f(o)/o < k (2-3)

c

g = c'x
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The block diagram is given in Fig. 1 where

6(s) = c'(sI - &) L b=ciagty (2-4)
The equations of the simplest particular case are

y = Ay + byu

u=-f(o) 0 <f(0)/ <k

. (2-5)

£ = £(0)

o =cly - ¥t

- -1
G(s) = cj(sI - A}) "b, +Jsﬂ

For the particular cases it is necessary to introduce the concept of
stability-in-the-limit. The particular case is said to be stable in
the limit if for u = -eo , with ¢ > 0 and sufficiently small, the
linear system obtained from (2-5) is asymptotically stable. This is
to make sure that the root locus of the linear system is in the left
half plane for all linear gain between zero and k. This is a more
significant problem for systems where the A matrix has a double root
at the origin or pure imaginary zeros. These cases are not considered
here. The reason for having f(v)/o greater than zero, rather than
greater than or equal to zero, for the simplest particular case 1is
discussed in section 2.2.

Now that the class of systems has been specified, the V. M.
Popov stability criterion can be stated. The statement of the follow-

ing theorem is essentially the same as that given in Aizerman and Gant-

macher (1964).
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Theorem 3-1: For the principal case of (2-3) to be absolutely
stable in the sector o,‘kl and for the simplest particular
case (2-5) to be absolutely stable in the sector (o, k], it is
sufficient that there exist a finite real number B such that
for all real w > 0 the following inequality is satisfied.

Re(l + jR)G(w) + % >0 (3-1)

The importance of the Popov criterion is due in a large part
to its simple geometric interpretation. A new function W(w), called the

modified frequency function, is defined such that

ReW(.) = ReG(jw)
(3-2)
ImW(e) = «ImG(ju)
so that the polar plot of W(w) is obtained from that of G(j.) by multi-
plying all its ordinates by the corresponding value of «. Here it is

assumed that the transfer function G(s) always has more poles than

zeros, so that lim G(jw) = O ., However, if there is only one more pole
)

than zero, then lim W( ) has a limit point on the imaginary axis not
w=> *®

rt
rt
oo g
[1]
O

rd
Lo

£

The modified frequency response function is used to obtain the
geometric interpretation. Let
W) =X + jY
then
Re(l + 3/ )G(Jv) = ReG(ju) - FOImG(ju) = X - Y
Hence (3-1) can be written as

X - 6Y +-i- >0 for all w > O (3-3)
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The equation

X - 8 +2=0 (3-4)

is the equation of a straight line with slope 1/3, which passes through

the point -1/k on the real axis., As in Aizerman and Gantmacher, this
line is called the Popov line. The inequality (3-3) is valid if the
modified frequency plot is in that part of the plane which is to the
right of the -1/k point and does not intersect the Popov line. Figure 3
shows two possible stable systems.

In the case £ = 0, the modified frequency response does not have
to be used. In that case (3-1) reduces to

ReG(jw) + % >0 (3-5)

so that as long as the plot of G(jw) is to the right of the vertical
line through 1/k (i.e., the slope 1/B is infinite), the system (2-3) or
(2-5) is absolutely stable. An example of this is shown in Fig. 4.

A more complete look at the various results which are available
for the different particular cases of the system (2-3) is given in
Aizerman and Gantmacher (1964) and in the series of papers by Yakubovich

(1963a, 1963b, 1964a).

3.3 The Relation Between the Popov Criterion and the Second Method

In this section the relation of the Popov criterion (3-1) to a
Lurie type Liapunov function is discussed. Two Liapunov functions are

used; Vo for the principal case and Vi for the simplest particular case.

o

Vo = x'Px + f f f(z)dz (3-6)
0
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/// Popov Line

=1

Jw(w)

7N

V()

Fig. 3., Geometric Interpretation of the Popov
Criterion - Stable Systems.

bl et

G(ju)

Fig. 4. Popov Criterion - £ =0 - Stable System
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o

V1 = x'"Px + 0(0-3'5)2 + B /ﬂ f(z)dz (3-7)
0

Here P is a positive definite, symmetric matrix. Popov also considered
adding the term r'x to V, to get the most general quadratic form, but
he proved that it is necessary that ¥x = 0 . 1In Fig. 3 the geometric
criterion is shown for £ both positive and negative. Aizerman and Gant-
macher (1964, p. 58) show that these two different cases are related by
a linear change of variables which just interchanges the sides of the
nonlinear sector B), k] . For this reason only the case of # > 0 is
considered in what follows.

Before proceeding any further, a lemma is proven which is of
great use in what is to follow., This lemma is due originally to Yaku-
bovich (1962) with the sufficiency proof following Lefschetz®s (1965)
version of Kalman's (1963) work. The term R does not appear in the
above works but 1s inspired by the work of Rekasius and Rowland (1965)
whose results are stated as a corollary. 1In most applications the term
oR = 0, but since it is needed for some special cases, it is included
in the derivation which follows.

Define A, by

A = (3T - A) (3-9)
Since the matrix A has all its eigenvalues in the left half plane, the
matrix A  is always nonsingular for all w and Aﬁ_l exists.
Lemma 1: Given the stable, n by n, real, matrix A; symmetric,
n by n, real, matrices D > 0 and R > 0; n-vectors g # 0 and
h # 0; and scalars r > 0, ¢ > 0, and ¢ such that the right hand

side of (a) 1is negatzve definite; then a necessary and suffici-
ent condition for the existence of a solution as a symmetric,
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n by n, real, matrix P (necessarily > 0) and an n-vector
q of the system

A'P + PA =- g g°- pR - ¢D (a)
Pg-h=v1 g (b)
is that € be small enough, and that the relation
c o+ 2reb'a, g - ppa, R, g s 0 ®

be satisfied for all real w

Proof of Necessity

The identity

A'P + PA = -(PA, + A =

P) (3-9)
is needed first. This is obtained by adding and subtracting jwP to
A'P + PA.

AP + PA

A'P + jwP + PA - juP

]

-(-JwI - A®)P - P(JuT - A)

A, %e - BA
The identity (3-9) is used in (a) tc get
PA_ + A, *P =qq' + R+ eD (3-10)

* -1 -1
This is premultiplied by g'A, and postmultiplied by A, g giving

-1 *-1 -1 -1

~ ot o~

~ VDA L ~TA o = otaA A
E'Fa, EBTEA, E= &4, 44394 8

%=1 -1 *-1
+ pg’A, RA, g+ cg'A” DA, g (3-11)

Then by using (b) Pg is replaced by N h giving
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(3-12)

Since h'Au'l g+ g Ab;"t"1 h =2 Re h“Aw‘l g , then, by rearranging the

terms, (3-12) becomes

2Reh! A(jl g-oga¥ler g

S ~ va -1 8
=q'A, & - 21T Reg'A, "~ g+t (3-13)

%-1

where & = ¢ g'A DAH‘“l g >0 . That % is greater than zero can be

seen by considering D > 0 as a Hermitian matrix. The matrix D =

*-1 -1

A, DA , is the Hermitian matrix deduced from D by the change of
. o4 -1 \ ' 7, -1 -1
coordinates y = A ~ x . iHence, Dy >0 and g'Dyg = g'A DA~ g >0.
Adding + to both sides of (3-13) gives
1, -1 _ vy -1 -1
T+ 2Reh'A " g - 0 g'A RA "7 g
= lg'atg -T2 ae (3-14)
Since the right side of (3-14) is always positive, the result is
1y -1 oty *-1 -1
T + 2Reh'A " g - ¢ g'A RA " g>0 (*)

Therefore, starting with (a) and (b) and assuming that all the quantities

exist, it has been shown that {(#) is necessarily true.
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Before going on to the sufficiency proof an additional observa-
tion, due to Kalman (1963), is made. When the pair (A, g) is completely
controllable, i.e., det (g, Ag, . . ., An_lg) # 0 . the matrix A can be
represented in phase variables with g¢ = (00 . . . 0 1). Let A =
(sI - A). Then, for the given choice of A and g the expression h'AS—lg

is written as

n-1
-1 o hl + hZS + . . .+ hnS
28 BF det Ag

(3-153)

This result is needed in the following sufficiency proof.

Proof of Sufficiency

The functions ZREE'Au-l g -0 g'Am*_l RAw—l g and g'Ah*'l DAw-lg

are real rational functions of w with numerators of degree less than
their denominator, and therefore they go to zero as . goes to infinity.
They are continuous for finite w,and hence they have finite upper and
lower bounds. Let . be the upper bound of quw*-l DAL”—l g and 1 be the
lower bound of 2Reh's ! g - ¢ g'a 1% -1 Si D>0, ti

er bound o eh’A g -1 &4, RA, " g . ince , then

>0 . Hence

-1 -1% -1
N ., - 1
T+ 2Reh’A, " g - 0 g8'A, RA " g
(3-16)
- E'AU.*-l DAu—l g>t+w-€yqn
However, by (#) = + n > 0. Hence, if ¢ = 1/2(<7 + n) /i, then
-1 -1 -1
T+ 2RehfA g - ¢ g'A RA T g
- eg'a, st g >0 (3-17)
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Let det Aw = a(jw) which is a real polynomial of ju with leading
coefficient unity. The last three terms on the left side of (3-17) are
of the form a polynomial in .2 divided by fa(jn)lz . This is because
they are either the real part of a function of jw or the magnitude of

such a function, Therefore, the left side of (3-17) can be written as

T+ 2Reh®A, " g - ngta, MRt g

2
Ul

- -l# 5, -1 ) i
- .g.qu DA(U .g. a(jm)a(—ju;) (3 18)

where u(wz) is a polynomial of degree 2n with leading coefficient 7
However, by (3-17) u(w?) is always greater than zero for all w. u(wz)
is a real, positive, and even function of jw. By the spectrum factoriza-
tion method of the Wiener theory of optimum linear systems (Lee 1960, p.
376), u(mz) can be written as

u(@?) = o (-10)o(3) (3-19)
where ¢(jv) 1s a polynomial in jw with real coefficients. Since the
leading coefficient of u(wz) ig 7, that of ¢(j. ) 1is JT, and the degree
of ¢(jv) is n. Therefore, ¢(j.)/a(ju) can be written as v(j.)/a(ju) +

-

N1 and (3-18) becomes

T + 2Reh’s "1 lg

\
w

-1 -
& - og'A "7 RA

v(ijw + 2 -
- (a—g-j% +47) (lafi(-}ﬁ% +47T) (3-20)
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v(jw) is a polynomial of degree at most n-1, If Vis Yoy o e e 5V

are the real coefficients of v(j.); define g by

33 = - (vl V2 . e e V ) (3'2])

n

Once g is known, the matrix P is obtained by (a) of the lemma.
Since A is a stable matrix and Q = g ¢ + oR + €D is positive definite,
then use of the Liapunov theory for linear systems shows that if A is
stable and Q is positive definite (or semidefinite), the matrix P which
results from solving AP + PA = - Q must be positive definite.

This may seem to be a rather arbitrary definition for g. How-
ever, this g 1s now shown to also satisfy (b) of the lemma by going back
to the necessity part of the proof. First of all, as indicated previous-
ly, the matrix A and vector g can be assumed to have a certain form.
Referring to (3-15), it is seen that

-1
=-g'A g (3-22)

VAN

a(30)

Hence (3-20) becomes

-1 - 1% -1 -1 -1
T+ 2Reh’A " g - og'A RA, "~ g -€g'A, DA,

= (-q'A," g + VT )R(-q'a T g VT (3-23)

Multiplying out the right side gives

1

t + 2Reh’A "l g - rg’A T1ERA TN g - e gia T pa tlg

-1

= g'A, *q _q“AU_"l g - 2Reﬂ“Au'l g+ (3-24)
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The 1 cancels; and going back to (3-12) in the necessity proof,
solving it for g"Aw*-l q g“Aw-l g and substituting this into (3-24)

results in

. - -1 -1% -
ZReh“Au ! g -0 .g.'AU 1 RAU) g - eg"Aw 1 DA, ! g

-1 - -1 -1 -1
= 2Reg'PA g - '“g.un:* ! RA g - € EVA'L.; DA, 2

-\7 2Re(q’a,"! @)

Cancelling the proper terms and manipulating the remaining ones give

-1

2Re(Pg - h -7 Q)'A " g=0 (3-26)

For (3-28) to be true for all real w,the vector in the parenthesis must
be zero or

Pg-b_-\qg=0

This is just (b) of the lemma. Therefore, by starting with (#), a vector
q was constructed and a matrix P found which satisfy (a) and (b). There-
fore (%) is sufficient for the existence of the solution of (2) and (b),
In the work of Rekasius and Rowland, a result similar to Lemma 1
is used. It is actually the case where R = r r?, This can be stated as

a corollary

Corollary 1: If the matrix R =1 r', then (%) is written
T+ ZREEUAu_l g - olg'Am'l glz >0 (3-29)

This corollary is used in Chapter 4.
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Another special case is when ¢ and € are zero. The lemma then
reduces to Kalman's lemma (1963) with the result that the less than

sign is replaced by a less than or equal to sign, that 1is,

T + 2Reh’A "' g >0 (3-30)

I

This will also be of use in what follows.
Now that the lemma has been proven, it can be used to prove the
Popov criterion by relating the Popov criterion to the Second Method of
Liapunov. The simplest particular case is treated first, and a theorem
relating the Popov criterion to the Second Method is stated. This par-
ticular statement of the thecorem follows Lefschetz (1965) and is used
because it has the condition that -V be positive definite in it. Other
statements of this type of theorem (Kalman 1963) have the condition
that -V be only positive semidefinite. The definite 6 is preferred
here since applications are to be made to time-varying systems, where
-& must be positive definite to conclude asymptotic stability.
Theorem 3-2: A necessary and sufficient condition in order that,
with Vi as above, both V; and -61 are positive definite for all
X, o and admissible f(o) is that the Popov inequality
Re(2cry + 30R)G(5) + ka >0 (3-31)

holds for all real . together with 1 > 0 where

1 ) 2 y
= = N ~ .
C = reh + fy + =

When these properties are satisfied the system (2-5) is absolutely

stable,
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The Popov incquality above is obtained from the original Popov
condition (3-1) by letting 2ay =1
The proof of the theorem requires putting -01 in a form such that
the lemma can be applied. For convenience the system equations are re-

peated. They are

IR e
]
>
X
<+
o2
=

u = -f(o)
(2-5)
t = f(o)
o = .(_;.7_)_(_ -yt
The Liapunov function is
o
[
Vy = x'Px + oo - c“zc_)2 +g f(z)dz (3-7)

0

but (o - 3“5)2 = yzgz so that

\’11 = x"(A'P + PA)x + 2x'Pbu + 2vy2 £f + BE(0)(c'x - y £)

Substituting f(o) for é . ¢' - o for yt and -f(o) for u, and collecting
terms gives

v

Vi = x"(A'P + PA)x - x'£(0)(2Pb - 2yc - BA'c)
- (7'b + BV () - 2y (0)o
The quantity AN(o) = 2yo{o - iégl)f(o) is now added and subtracted from

&1 giving

Vl = x"(A'P + PA)x - x"£(0)(2Pb - 2y 0 c - PA'c)

- (pc’b + By + -"‘-g%f(o)z - M (o) (3-32)
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The quantity A(c) 1is always positive since y and @ must be positive, and
(o - £ég-)-)f(c) is also positive. This is because of the inequality
0 < f(0)/o <k . Multiplying the inequality by the positive quantity
of(g) produces 0 < 25%13 < of (o) so that of(o) - f(c)z/k = (0 - f(o)/k)

k
f(o) >0 . Letting A'P + PA = -Q and writing -91 gives

-V = x'Qx + x'£() (2Pb - 2y G ¢ - BA'Q)
+ (Re'b + By + 2%95f(0)2 + (o) (3-33)

In order to apply the 1emma,-01 should be forced to assume a

form such that the solution of a set of algebraic equations shows -V1 to

be positive definite. The proper form is
) ' =2 '
-Vy = (g'x + f(o)/NT )T + x'eDx + N(o) (3-34)

where D is positive definite. If -Vl can be made to have this form, it
is positive definite, and since V is positive definite, the system is

absolutely stable. Multiplying (3-34) out gives
o R
-V = x'q g'x + 2f()x'ghT + —*;L— + x'e Dx + X(o) (3-35)

Equating the proper coefficients in (3-35) and (3-33) leads to the follow-

ing set of algebraic equations.

Q=9ggq’ + €D = -(A'"P + PA) (3-36)
[ ‘ 9

2g/NT = 2Pb - 2y ¢ - BA'c (3-37)

1 0 2yd

T =B8c’h +py+ = (3-3¢)
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The lemma can now be applied to this set of equations, and it gives
necessary and sufficient conditions for q and P > O to exist. In other
words the lemma gives necessary and sufficient conditions for the exis-
tence of Vi and -Vl to exist and be positive definite.

In order to use the lemma the expression for Jr g 1is needed.

JT g = P(tb) - 5 T(2y G ¢+ BA'S) = Pg - h (3-39)

Now that g, h and 1 have been identified, the condition for the exis-
tence of a solution to the set of equations is given. This condition
is now also a condition for the existence of a Liapunov function so that

it is a stability criterion. The condition is

-1

T 4 2Reh'A,” " g >0 (3-40)

This is (%) with the term pR = O . Substituting the proper quantities

for h'vand g into (3-40) gives

T + 2Re % 7(2y @ c + pA! _c_)"Aw-1 b >0
and

Z+oRe(ayela, P I pctan D) >0 (3-41)

Now A was previously defined as A, = jul = A . Therefore,

A = jwI - A, and Aw—l exists for all real w since the eigenvalues of A are

all in the left half plane. Therefore, postmultiplying A by Aw"1 glves

AAm_l = JUA Lo (3-42)
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Substituting this into (3-41) along with the expression for 1l/t1, i.e.,

(3-38) gives

Bc'b + py + 2%1 + 2Re(x vy g“Aw-l b

1 o -1 1
+ 5 fe’ Jwhy, " b -5 pe’b) >0
or

pY + lk’@-‘ + Re(2y: + jwf)c'A, "t b > 0 (3-43)

This is the exact expression that appears in Lefschetz (1965, p. 125).
If use if made of the fact that Re(20y + jwﬁ)}; = By , then (3-43) can be

rewritten as

2y + Re 2y + jwp) (_c_:_"Aw'l b + X)) >0 (3-44)
k = Jjw

But, for the simplest particular case, the term g“Am-l b + y/jw is just

the transfer function of the linear part of the system so that (3-44)

becomes
20 4 Re(2ys + JUBG() > O (3-45)
which is the inequality which appears in Theorem 3-2. If now the

term 2y is put equal to one, the result is just the basic Popov in-
equality (3-1), and B can be found by using the geometrical approach.

Next the relationship between the Second Method and the Popov
criterion is given for the principal case of the system (2.3). The
system equations are

é = Ax + bu

i

-f (o) (2-3)

u

o=c'x
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and the Liapunov function is

o
Vo = x"Px + B\jﬁ f(z)dz (3-6)
0

Taking 60 gives

{’0 = x'Px + x"PX + pf(0)o = 2x'Px + Pf(o)c'x (3-46)

Factoring out the i glves
-VO = -(2Px + 8cf(0))"(Ax - bf(0)) (3-47)

Some people tried to get a positive definite quadratic form in x and

f(o) directly from (3-46)(Aizerman and Gantmacher 1964, p. 20). Since

Ax - bf can be zero for x and f(o) not zero, -60 can at best be semi-
definite if treated as a quadratic form in x and f. This problem did

not occur 1in the simplest particular case because of the quantities ¢

and é also occurring in the -01 equation. However, the difficulty is
easily avoided by adding and subtracting the term A(o) = 8(o - fégl)f(c)-

The result is
-V, = S0x,£(0) + E(o - £égl)f(o) (3-48)

where the function S(x,f(o)) must be positive definite if 60 is to be
wepative definice,

Theorem 3-3: Necessary and sufficient conditions for Vg5 to be
positive definite as a function of x for all admissible functions
f(c) and S positive definite as a quadratic form in x and f(o) is
the Popov inequality

Re (S + jwp)G(jw) + % >0 (3-49)
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for some f8 > 0, some positive &, and all real w. When
these conditions are fulfilled both Vy and -V, are positive
definite and the system is absolutely stable,

Aizerman and Gantmacher (1964) point out that (3-49) is necessary
and sufficient for the existence of a Liapunov function constructed by
the above S-procedure, but that there exist other Liapunov functions of
the form V0 which cannot be determined by the S-procedure. However,
Yakubovich (1964b) has shown that there does not exist an absolutely
stable system of the form (2-3) for which the fact of absolute stability
can be established by using a Lurie type Liapunov function, but cannot be
established by using the S-procedure.

The proof of the theorem proceeds in an entirely similar manner

to the previous case. Putting the system equations into (3-46) glves
60 = x"(A'P + PA)x -~ 2x'Pbf(o) + Bf(o)c'Ax
- Be'bf(0)? (3-50)
Letting AP 4+ PA = -Q, adding and subtracting M(o), and writing -@0 give
“Vy = x'Qx + (2b'P - BclA - Be')f(0)x

+ (iﬂ + Be'D) £(0)2 + A(a) (3-51)

Again -QG should have the same form as given in the previous derivation,
i.e., (3-34). Equating the like terms in (3-35) and (3-51) results in
the equations

Q =¢€D + qg" = -(A'P + PA) (3-52)
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29/t = 2Pb - pA’c - pA'c - Bc (3-53)
1.8 1
- = tee’d (3-54)

so that for D > 0, the solution of this set of equations guarantees

absolute stability as before. The lemma requires

-1

? -

T+ 2Reh’A " g >0 (3-40)
‘where now h = % T(BA'c + B¢) and g = 1b so that

T + 2Re(% t(pA'c + Eg)“Aw-l Tb) >0 (3-55)
or

1 ' -1 1, -1

=+ Re(Pc'AA, " " b+ 8'A " b) >0 (3-56)

T

Making the substitutions for 1/t and AA”'I gives

+ e’ + Re(fe’jua, ™t b - pe’b + 8c’A "L b) >0

or

bl (o4

+ Re(jwp + B)c'A " b >0 (3-57)

. . o . =1 P .
which again is Lefschetz's result. Since cfAy, ~ b = G(jw), this can

be written as

i—' + Re(jup + 8) G (ju) >0 (3-58)

which is the inequality in the theorem. Letting © = 1 again gives the
basic Popov inequality (3-1).

The basic Popov criterion and its relationship with the Second
Method of Liapunov has now been given. In the next chapter the use of

these results for time-varying systems is discussed,



Chapter 4

FREQUENCY CRITERIA FOR TIME-VARYING SYSTEMS

4,1 Introduction

In this chapter Lemma 1 is used to derive various frequency
domain stability criteria for a class éf nonlinear, time-varying sys-
tems. The second section includes the work of Rozenvasser (1963), who
treated the principal case, and this is extended to the simplest par-
ticular case. The Liapunov function used in this section is a quad-
ratic form of the state variables.

The third section examines the work of Bongiorno (1963), Sand-
berg (1964), and Narendra and Goldwyn (1964) on the subject of time-
varying systems, and shows how their work 1s related to the Popov
criterion. The geometric interpretation of these various results is

given in the fourth section. The fifth section consists of two examples
illustrating the previous results, The frequency domain criteria are
applied to the equation which arises from a RLC circuit with time-vary-
ing capacitance, and also to the nuclear reactor kinetics equations.

The last section considers how the integral term can be put

back into the Liapunov function. This results in extensions of the

previous results of the chapter. The RLC circuit example is reworked

to show when these new results are applicable.

42
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4,2 Stability of Time-Varying Systems Using the Popov Criterion

The Popov criterion was shown to be valid for the principal case
of the time-varying system by Rozenvasser (1963). The development 1is
similar to that of the previous chapter, except that in this case the
quantity B is zero. Thus, the Liapunov function connected with this
development is just a quadratic form of the state variables. The reason
for eliminating the integral term 1s that the integral term is time-
varying, and only creates additional complications when the time deriva-
tive 1is taken.

The system equations are

X = Ax + bu
u = -f(o,t), 0 < f(o,t)/o <k (2-3)
o melx
and the Liapunov function is
V = x"Px (4-1)
Taking the time derivative and adding and subtracting A(o,t) = f(o,t)

(0 - £(o,t)/k) >0 to it gives

V = x"(A'P + PA)x - 2x"Pbf(o,t) + f(o,t) (o - £(o,t)/k) - N(o,t)
(4-2)

Letting A'P + PA = -Q, o = c'x and writing -V gives
-V = x'Qx + x'£(0,t) (2Pb - ) + £(0,t)%/k + A(o,t) (4-3)

Once again -V should take the form of (3-34) to insure that it is
positive definite. Equating the like terms in (3-35) and (4-3) gives

the following equations
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Q=g gq'+¢€ D= -(A'P + PA) (4-4)
29/t = 2Pb - ¢ (4-5)
T =k (4-6)

Applying Lemma 1 with g = kb and h = kc/2 gives

k + 2Re 2 ke’A,"l kb > 0
or

1

% + Rec'A b>0 (4-7)

But E'Aw-l b = G(ju) so that (4-7) can be written as

% + ReG(jw) > 0 (4-8)

(4-8) is just the Popov criterion for 8 = 0 as given in (3-1), and has
the same geometric interpretation as given in Fig. 4.
The derivation is also repeated for the simplest particular case,

since this was not considered by Rozenvasser. The system equations are

X = Ax + bu

u = -f(c,t)

. ’ (4-9)
E = f(o,t) 0 < f(o,t)/o <k

o=c¢'x - y¢E
- a1 r t _ PR p g
aild Lne L.L'dpullUV iy

V= x'Px + (0 - ¢')? (4-10)

Taking G,and adding and subtracting A(o,t) leads to the equation
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-V = x"Qx + x'f(o,t)(2Pb - 20 y ¢)
+ %X £(o,t)% + \(o,t) (4-11)

Comparing (4-11) with (3-35) and applying the usual lemma with g = kb ,

h=koayc, and 1/7t = 2ay/k gilves

2 ]
X4 re y e'A, T >0 (4-12)

But Re-jY;(zay) = 0. Adding this to (4-12) gives

20y 15 ~1 X -
et Re2ay(c'A "~ b + ju) >0 (4-13)
or for 2oy = 1

Y(l- + ReG(ju) > 0 (4-14)

Hence, the Popov criterion of 8§ = 0 holds for the case of a nonlinear

time-varying element in the simplest particular case also.

4.3 Other Work

There has been work by other investigators which gives essen-
tially the same results. Bongiorno (1963) derives his results for linear
systems with a periodic variation of the time-varying element, using a
combination of Floquet theory and Fourier analysis. Sandberg (1964) de-
rives his results using functional analysis. Narendra and Goldwyn (1964)
use the Second Method of Liapunov to get similar results. This section
shows that these results can be derived using Lemma 1, and they are

essentially the same as the Popov criterion.
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In the work which follows, only the principal case is considered,
and the nonlinearity f(o,t) is assumed to be in some sector [kl, kz],and
it is written as f(o,t) = k(o,t)o. Putting the system equatioﬁs (2-5)

into the time derivative of the Liapunov function (4-1) gives
V =x?(A'P + PA)x + 2x'Pbu (4-15)
Letting A'P 4+ PA = -Q and replacing u by u = -k(o,t)o glves
V= -x"(Q + 2Pb ¢'k(o,t))x (4-16)
Analogous to the previous work, -V is forced to be positive definite.
-V =x'(e D + (g + k(o,t)e) (g + k(o,t)¢c)’
+ (kg9 - k(o,t))(k(o,t) - kl)E cHx (4-17)

This is the V used by Narendra and Goldwyn (1964). Multiplying this
expression out gives

V= x"(e D + g g' - kjkoc ¢ + 2q c¢'k(o,t)
+ (k1 + kz)g c'k(o,t))x (4-18)
Comparing (4-16) and (4-18) gives the following set of equations
Q=€eD+gqgq' - kqkoc c! (4-19)
Pb = q + % (k1 + kz) c (4-20)

The corollary to Lemma 1 can be applied to this set of equati.ns getting
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1 -1 -1 2
1+ 2Rey(ky +kp)e’A, 7" b+ kikyle’s 77 b[7 >0 (4-21)

oY
1+ (k; + ky)ReG(Jw) + kyk,[6(Jw) % > 0 (4-22)

This 1s the result achieved by Narendra and Goldwyn. It should be
pointed out that (4-21) is true only when (4-19) 1s positive definite.
The results of Bonglorno can be obteined by setting up the sys-

tem equations such that k1 = -ky . In that case (4-22) becomes

1 - k6 [F > 0
or

kol | <1 (4-23)

Bonglorno attained this result by means of a completely differ=-

ent derivation,

The results of Sandberg can also be obtained from (4-22). First
divide (4-22) by p(jnxz = G(j.)G(-j.) and then add and subtract

%(kl + k)%, The result is

1 k1 + k2 1 1

camecsy YTz CEGoy ey

2 2
(ky + k,) _ (ky + k)
4 4

+ kiky >0 (4-24)

This can be rewritten as

i} 2
1 ky +k,  (k, - k)

G(-ju) + 2 )- 4

1 . k, + kz)(
G(jw) 2

>0

(
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or
2
G(jw) 2 4

The final result being

ko - ky G(jw)
2 ky + Ky
L+ (D63

<1 (4-26)

which is Sandberg's criterion.

It is also seen that, by letting k, = 0 and k, = k in (4-22),

1
the result is

ReG(jw) + % >0 (4-8)

which is just the Popov criterion derived in section 4.2,
Actually (4-22) can be derived in another manner, that is by
just using the standard Popov equation and rotating the nonlinear

sector. Starting with the original set of equations

% = Ax + bu
u = -f(o,t), 0< f(o,t)/o <k
(2-3)

o= c%

G(s) = c'(sI - A) 1 b

The nonlinear sector is rotated by the transformation f = fj-kjo.
This means that kl < fllo <k + kl = ky or k = k2 - kl . Substituting

this into (2-3) gives
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X = A X + buy

1

up = -f1(o,t), ki < fy(0,t)/0 <k,
(4-27)

o= c'x

Gy(s) = c'(s1 - AD " b

where A1= (A+ kb ¢’) and uy = u - kjo . To find the relation between
G(s) and Gy(s), the equation relating A and A is used in the original
system equations. Taking the Laplace transform gives

(sI - A)x(s) = bu(s)

(sI - Ay + ky b c¢")x(s) = bu(s)

x(s) + (sI - A7 kg b e'x(s) = (sI - Ap) ™% bu(s)

c'x(s) + ¢’ (sI - Al)-l bkic'x(s) = ¢'(sI - Al)"1 bu(s)
or

o(s) + Gl(s)klo(s) = Gl(s)u(s)

() /u(s) G1(s)
G(s) = o(s)/uls) = ¢ kG, (s)

Putting this into the Popov expression (3-11) along with k = ko - ky

gives

1 Gl(jw) > 0
——— 4+ Re :

Rewriting this inequality gives
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Gl(j(.A)) 1 Gl(jb‘)

1
— + = :
1 + k1G1(3) 21+ lel(-Ju)

ky -k

1
> >0

Multiplying through by (k, - k) (1 + klcl(ju))(l + kyGy(-jv)) does not
change the inequality, and, by suitable grouping of terms, gives (4-22).

The next section gives the geometric meaning of these various criteria.

4.4 Geometric Interpretations

The following geometric interpretations can be put on (4-23),
(4-26) and (4-8). For (4-23) it is obvious that the system is stable if
the frequency locus is always inside the unit circle (Fig. 5a). (4-8) is
just the usual geometric interpretation of the Popov criterion with
f =0 (Fig. 5d). (4-26) requires some work to interpret.
For (4-26) there are two cases to consider, k; > 0 and ky < O,
When k; >0, the system is stable if the locus of G(ju) is always outside
the circle of radius (k, - kl)/ZklkZ centered at (-(k; + k2))/2k1k2,0)
(Fig. 5b), and for kj < O the system is stable if the locus of G(ju) is
always inside the circle of radius (ky - ky)/2kjky centered at (-(ky + kp)
/2k1k2,0)(Fig. 5¢). This result is obtained by first squaring (4-26)
and cross multiplying, getting
I T VN G &
l 1+ — GUjvy l >
Letting G(jv) = x + jy results in, after sufficient manipulation, the
inequality

2

2
L+ (ky + k)x + k kox? + kykyy® > 0

172
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a) -k < f(o,t)/0 <k b) ky < f(o,t)/o0 < ky

ky >0

\

N

c) k) < f(o,t) /o < ky d) 0 < f(o,t)/o <k

ki <0

Fig. 5. Stability Criteria for Time-varying Systems.

Examples of Stable Systems.

51
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When this is divided by k1k2, there are two results

> 0,k; > 0
L ky + kg 2 2

+ X +x +vy
kiky = kiky

< 0,k; <0

If the square is completed in x, the result is

2
ky +k, 2 > (k, - k)
(x + D) +yE | A1 (4-29)
1k < 4lkiky)

If the inequality signs are replaced by equality signs, (4-29) is
the equation of a circle with the stability information obtained as
indicated above,

All four geometric interpretations are illustrated in Fig. 5.
It may be that one of these versions of the stability criterion is
easier to apply than the others for a specific problem. This is illus-

trated in the examples which follow.

4.5 Examples and Discussion

In this section two examples are worked which illustrate the
above stability criteria. The first example is the Mathieu equation,
which arises from a series RLC circuit with a periodically varying
capacitor. One reason for using this equation is that it has been
studied extensively (McLachlan 1953), and its exact stability properties
are known. This enables a comparison to be made with the sufficient
results which are obtained here. The second example is concerned with

nuclear reactor stability.



Example 4-1

The differential equation for this example 1is

X+2¢tx+(l-2qcos 2t)x =0

This equation can be put into matrix form in two ways:

Case 1

— e

it

o

ng -1

Case 2

Xz_J -(1-2q)

The transfer function for Case 1 is Gl(s) = 1/(s2 + 2{s + 1) with

_2(;—}

X
2]

"

2q(cos 2t)xl

2q(l-cos 2t)x1

53

-2q < f1(xy,t)/x; <2q, while for Case 2, Gy(s) = l/(s2 + 2ts + 1 - 2q)

with 0 < £,(xq,t)/x] < 4q.

For Case 1 the Bongiorno criterion (4-23)

is used and for Case 2 the Popov criterion (4-8) is used.

Case 1

kKlg(i )| <1

IG(J) |2 = (

Setting the derivative with respect to : of the denominator of

lG(jc)l2 equal to zero, to find out the frequency at which it is

1

L - )2 4 4207

T



minimum, gives

2(1 - «220 + 82 L =0
v =0 ¢ > .707

Lu=wl_§2 ¢ < .707
Looking only at the low damping case and substituting

w =vi - QZ into IG(jw)!2 gives

1

65 [* = L -
202 + 4t2(1 - 2v2) 421 - 2

54

Therefore IG(jw)l max = 1/2 N1 - gz . Putting this into (4-23) with

k = 2q gives

—294
20N - ¢
q< Nl -2
Therefere, 1f gq is less than (V1 - ;2, the system is known

% + ReG(jw) > 0

1 1
hg PR T 50 T ¥ 2y

~.
o>

Calculating the real part gives
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2
1 1 - 2q -
Z— + Re qé 5 > >0
q (L4 2q - 9% + (250)
2.2

Multiplying by 4q((l - 2q - «7)° + (2§w)2) does not change the inequal-

ity, and results in the expression
(-2 + 12 - 4q2 + 422?50

Finding the minimum of value of this with respect to « again gives
w=+1 - Zgz for { < .707. Putting this into the previous expression
gives

-1 +2:2 4 1% - aq? + 4220 - 2¢%) >0

q < g\l - Qz

which 1is the same result as Case 1, as 1t should be.

For this simple example there does not seem to be any notice-
able advantage of one stability criterion over the other, However, for
ilgher order equations of the type

(n) (n-1)

x + a, X + .. .+ ax+ al(t)x =0
the stalility criterion given by (4-23) is easier to apply when find-
ing how large the amplitude variation in al(t) can be while bLeing sure
the system is stable. This is seen by observing the differences between

Csses 1 and 2. For higher order systems the graphical procedure is
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usually followed in order to get the maximum of IG‘ or the minimum of
the ReG. In Case 2 the transfer function Gz(jw) has the parameter q
in it, and solving the problem graphically is a trial and error proce-
dure, For a given value of q, ReG(jw) 1s plotted, and it must be to
the right of the vertical line through -1/4q. Therefore, for different
values of ¢, not only is the locus of G(jw) different, but the Popov
line shifts also. Finding the value of q when the locus and the Popov
line are tangent is a definite trial and error procedure. In Case 1
G(j.) does not have q in it and can be plotted once and its maximum
value determined. Therefore, for the class of systems given above, the
Bongiorno criterion has a definite advantage. For other classes of
systems, one of the other criteria may have a simlilar advantage.

The results of the example presented here can be compared with
the existing results on the Mathieu equation, to see how close the
criteria of this chapter come to the necessary condition for stability.
For : = .05, the above results give q < .05 as being sufficient for
stability. The actual stability boundary, as calculated in Phillips

(10617
Liv83)

by the Tiaa-
s ¥4 - kA 2

J L

i A4 =01 aon ivan
y +5 § = Veasx 5T 1 given

punov-Popov approach is only half the actual maximum value. Better

results are obtained for systems with higher damping than { = .05.

N

Example &4-
This example treats a nuclear reactor operating at some given

reactivity level, and it is assumed that this reactivity level is

perturbed. This perturbation is treated as a time-varying coefficient,
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and (4-23) is used to find a condition on the amplitude of the variation
which will insure stability.

The reactor equations are (Weaver 1963)

6
I.1=6—k——-—ﬁn+y‘ »sgC
jA //J ii
i=1
. Bi
Ci H'E—n-).ici

The reactivity is assumed to be of the form
ok = 51(0(1 + £(t))

The equation for 2 is now

6
n=—"'—“£ n+§j )\.iCi+""T——'
i=1

The complete set of equations written in matrix form can be represented

by

(BN

= Ax + bf(o,t)

o=c"x
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where
!—T,ko - 5
2 ! 2 3 M M M6
81/4 - 0 0 0 0 0
Byl 0 Ny 0 0 0 0
63/£ 0 0 -\3 0 0 0
A=
By, /8 0 0 0 A 0 0
Bs/ﬂ 0 0 0] 0 -Xg 0
eé/z 0 0 0 0 0 “Mg
and
b'= ¢'=,1000000,
In order to use the stability criterion the expression G(s) =
-1

c'A; b must be calculated. It can be shown that this expression is

G(s) = g“AS b = 6
_, B - %k ) Kﬂ NiPi/2

/
/

- T
£ c=1 1

If uranium-235 is used in the reactor, the constants are (Weaver

1963) B = .0064 and
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i M Ry

1 0.0124 0.00021
2 0.0305 0.00140
3 0.111 0.00125
4 0.301 0.00253
5 1.13 0.00074
6 3.01 0.00027

The value of g 1is 10-4 seconds and assume the steady state value of
reactivity okg 1is -10-3.
The stability criterion is (4-23)

kleG) | < 1 (4-23)
and the maximum value ofIG(juﬂ for the given constants is 0.1. There-
fore 0.1k << 1 or k < 10. But k = 'ﬁko £(t) /1. Putting the proper
quantities in this expression gives ‘f(t)i < 1 . Therefore the system
is sure to be stable for any change of reactivity such that the new
reactivity is between 0 and -2 x lO—3 .

Of course this gives a gross account of the stability region
since effects such as feedback effects of the temperature on the reac~
tivity were not considered explicitly, but were lumped together as a
time-varying coefficient. Better results should be obtainable by ad-

joining the equations describing these effects to the above set of

system equations,

4.6 Retaining the Integral of the Nonlinearity in V

In order to try to improve the sufficient conditions for sta-

bility derived earlier in this chapter, the integral of the nonlinear



term is put back into the Liapunov function. The work here follows
Rekasius and Rowland (1965) and is for the principal case of (2-3).

The starting point is the usual Liapunov function for the
principal case

- g

Vex'Pxte | f(z0d (3-6)
i
0
The time derivative is
6 . . ’,\0 3
V= x"Px + x'Px + pf(o,t)o+p / i££%4£l dz (4-30)
/ O

[

0

o
The idea is to put bounds on /ﬁ %% dz in various ways while insuring

0

that -V is negative definite. There are three cases which can be

considered.
Case I
o
[ 2£(2,8) 4z < 00 (4-31)
. ot
0
Case 1II
.0
Af(z,t
0]
Case III
0\
/q 9£$%4£l dz < ng(o,t)2 (4-33)

0

60
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The three cases can be combined in different ways, but this only adds
another degree of confusion to the calculations since it is not clear
how much one case should be weiglhited compared to the others.,

The equations for -V are obtained for each case by adding and
subtracting M\(o,t) and the right hand side of (4-31), (4-32), and (4-33)
to (4-30). The result in each case is

Case I

-V = x7(Q - By ¢ ¢)x + x'(2Pb - pA'c - ) f(o,t)

+ (2c'b + i—)f(ﬁ,t)z + n(c, t)

g
+ (Boyo? - e / 9££%L£l dz) (4-34)
J 2
0

-V = x'Qx + x’(2Pb - pA'c - Pr,e - o) f(o,t)

+ (fc'b + —i—)f(c,t)z + N(o, t)

G\
g Yz g (4-35)

N e
alu

+ (Eazof(o,t)
0

Case III

-V = x'Qx + x'(2Pb - BA'c - c)£(a,t)

+ (fc'b - g+ %)f(cr,t)z + N(o,t)

a
+ (60-'3f2(0,t) - A [Eé“iil dt) (4-36)
@]
0
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Similar to the previous development, if -V is o the form

v = (g’ + f(U;t)/J;)Z + x'ebx + 2(o,t)

+ (Positive term) (4-37)

then by comparing (4-37) to (4-34), (4-35) and (4-36), a set of
algebraic equations is obtained which can be used with Lemma 1 to obtain
stability criteria. The equations are

Case I

Q=HQ'+€D+B(‘:1

1o
o
-

29/ = 2Pb - BA'c - ¢ (4-38)
1 1y 4 L
T = Be'b + k
Case II
Q=gqggq' +e€D
23/J; = 2Pb - FA'c -~ ¢ - AL (4-39)
_1..=,f:l _]'.
T Fe'h 4 k
Case IIXI
Q=9q9q°+¢€¢D
2g/\T = 2Pb - BA'c - ¢ (4-40)

Al |0

1
S = Pe’b - pu3 +

The application of Lemma 1 to these equations results in the following

stability criteria.

Case 1

% + Re(l + JuB)G(3) - A l6(G) |2 > 0 (4-41)
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Case II

% + Re(l + By + JENG(IL) > O (4-42)
Case III

£ - By + Re(L + JuB)G(ju) > O (4-43)

Therefore, if some 8 can be found such that one of the inequalities
(4-41), (4-42), or (4-43) holds for all real ¢, then the system (2-3)
is absolutely stable.

Since the Bongiorno type of criterion had an advantage for
certaln systems in the above work, the analogous case was also inves-
tigated here. This advantage did not carry over however, and the results
are more complicated than those given above. Therefore, they are not
included here.

An example is now given which illustrates when the above cri-
teria give improved results over the previous case (4-7). The same

equation as in Example 4-1 is considered.

Example 4-3

The equation is
X + 2t% + (1 - 2q cos 2t)x = 0

In matrix form this is

v—— r o - 1
X]. 0 1 X]. 0

= + 2q(1 - cos 2t)xl
*2 -(1 - 29q) “2r | x| 1
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To use the abovercriteria,the numbers 13, Op, and &3 must be calculated.
f(xl,t) = 2q(1l - cos 2t)x1

0 < f(xq,t) /%y < 4q

Bf(xl,t)

St = 4q(sin 2t)x,

X
[T e—f—o%‘-g- dz = 2q(sin 2t)x;?
vJ/

0
For the three cases (4-31), (4-32), and (4-33), the inequalities are

Case I

2q(sin 2t)x12 < Xy

oy = 2q

Case II

2q(sin 2t)x12 < 9x12q(1l - cos 2t)xy

o = max sin 2t -
al — o
2 1 - cos 2t

Case III

2q(stn 26)x,2 = t4q° (1 - cos 26)%x,2

sin 2t - o
2q(1 - cos 2t)*

J, = max
3

The stability criterion for Case III, (4-43), can only be true for

@3 = o if B = 0. Therefore this criterion reduces to the previous case,



(4-=7). In Case II &y = © means that (4-42) becomes
Refn,G(ju) > 0

The transfer function G(jv) 1is

1

G(jw) = >
1 - 2q -0+ j2w

1 - 2q - ruz
ReG(jUf) =

(1 - 2q - w2)2 +.4§2m2

The sign of ReG(jw) changes as w goes from zero to infinity so that

this criterion is no good unless £ = 0.

This just leaves Case I. The criterion in this case is

14 Rre(l + 3ot - f2aloiw)[? > 0
The quantities lG(j!)l2 and Re(l + j2)G(ju) are

1
le(ie) 2 =

2 2

2)2 + 4%

(1 - 2q - w

1 - 2q - u2 + ZBQJZ
(1 -2q - «?)? 4 42,2

Re(l + jBu)G(ju) =

so that the criterion is

1 ,1-2q-w+2a0.2 - 2q8

40 (1 - 2q - )2 + 4r 202

> 0

65

again
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Multiplying thorough by 4q((1 - 2q - wz)z + 4§2w2 gives
(1 - 2q - UZ)Z + 4§2u2 + 4q(l - 2q - wz)
+ 82wltq - 88q% > 0
This can be rearranged as

w4 + o2(-2 + 4@2 + 8pfq) + 1 - 4q2 - SRq2 > 0

=

Finding the frequency at which this is minimum gives wl =1 - Zéz - 48tq
or, when 1 - 2§2 - 4B8fq 1is negative, w = 0. For the case where w = 0
the criterion is ‘

1 - 4q% - 88q%2 >0

or

Therefore q is maximum when 2 = 0 and the maximum q = 0.5 for ( > .707.

In the other case substituting for uz leads to the inequality
(- 2?2 - 4ptd? 41 - 4q® - 82q® > 0

From the previous example, the maximum value of q using the Popov cri-
terion was q < 0.05 for { = 0.05., If these values are substituted into
the above expression then it can be seen that again A& must be zero for
the above expression to be satisfied unless q 1s made smaller than 0,05,
Therefore, the inclusion of the integral term into the Liapunov
function is no help at all for the equation under study. One reason

for this is that the frequency of the time variation is at a critical
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value. This equation is the damped Mathieu equation which has been
studied, by other means, by McLachlan (1953) and Cunningham (1954). One
of the results of these studies is that, if the frequency of the cosine
term 1s twice the natural frequency of the constant part of the equa-
tion, then this 1is a critical value as far as stability is concerned.
This holds true for all higher even harmonics of the natural frequency.
Therefore, the stability does not depend on the rate of variation di-
rectly, but on the relation of the rate of variation to the natural
frequency of the equation,

This brings up the question of whether the frequency criteria
of (4-41)-(4-43) are any good at all, The answer is that these cri-
teria should be applicable whenever the frequency of the varilation is
less than twice the resonant frequency of the equation. In higher
order cases this should hold if the frequency of the variation is less
than twice the nataral frequency of any dowminant complex roots. This
is just a conjecture, however.

Case I of the above problem is now reworked with the frequency
of the variation decreased by half. Everything is the same as before
except that cos 2t 1is replaced by cos t, which then changes the value

of 0y to o = q. The stability criterion is

1

1o+ Re(L+ JB)G(I) - 6w |2

> 0

or substituting the transfer function into this inequality gives

4q (L - 2q - wW2)2 + 4C2u2

- - .2 2.
1 + 1 2q - < + 2Rtu qB8 > 0
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Manipulating this expression gives
o+ w2 (-2 + 422 +80CQ) + 1 - 4q% - 4ot > O

which is minimum for v? = 1 - 2@2 - 43tq . Substituting this into the

equation gives

-1 - 262 - 4ptqd2 + 1 - 4q% - 4pq® > O
Let { = .05. The inequality becomes

-.04p2q2 4+ B8(.398q - 4q2) + .01 - 4% >0

It can be shown that the maximum value of q which satisfies this in-
equality is q = .0856 when g = 7.93., Therefore, the sufficient con-
dition for stability is q < .0856 which is an improvement over the
previous result of q < .05. Therefore, the inclusion of the integral
term into the Liapunov function does lead to an improvement in the
stablility criteria if the time variations are slow enough.

This chapter developed the Popov criterion for time-varying
systems, and showed how the Popov criterion is equivalent to the work
of Bongilorno, Sandberg, and Narendra and Goldwyn. The basic Popov
criterion was then e xtended by following the work of Rekasius and Row-
land, and this extension was shown to give 1improved results when the
time variations are sufficiently slow.

Now that stability criteria have been developed for nonlinear
and/or time-varying systems with one nonlinear and/or time-varying

element, the case of many such elements is considered. This is done

in the next chapter.



Chapter 5

SYSTEMS WITH MANY NONLINEAR AND/OR TIME-VARYING ELEMENTS

5.1 Introduction

This chapter contains extensions of the previous work to
systems with more than one nonlinear or time-varying element. These
are the types of systems which are described by equations of the form
(2-1). Obtaining stability criteria for these systems comprises most
of the original contributions of this work.

The second section starts with the principal case of the sys-
tem with m nonlinear elements., A Liapunov function, analogous to
the one used in Chapter 3, is used, and the result is a set of alge-
braic equations, which must have a solution, if V and -V are to be
positive definite. This leads to an extension of the matrix-inequal-
ity method so that it can be used for systems with more than one non-
linearity. A new lemma, which is a generalization of Lemma 1, is
proven, This lemma is then used to get the stability criterion, the
result being that a matrix which is a function of real frequency must
be positive definite. For one nonlinearity this reduces to the pre-
vious work. A comparison of the stability criterion with previous
work in this area is made, and three examples are worked illustrating
the various features and short-comings of the criterion.

In the third section the criterion is extended to time-varying
systems. Results,completely analogous to those obtained in Chapter 4,

69
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are obtained. The application of the criteria is illustrated by means
of an example,

The fourth section contains a discussion of the particular case.
It is shown that, in general, the particular case cannot be extended
for the systems with many nonlinearities. However, one particular
class of systems which does permit an extension is given, and a sta-
bility criterion is derived and its use illustrated by an example,

The last section contains conclusions.

5.2 Multiple Nonlinearitieg--Principal Case

In this section the previous results are extended to obtain a
frequency domain criterion for the principal case of the system with m
nonlinear elements. The time invariant case is considered in this sec-
tion, while the time-varying nonlinear case is considered in the next.

The system equations are given by (2-1) and are repeated here

for convenience.

x = Ax - B £(9)

f(@)? = lfl(al) f?_(cz) s v . fm(cm),. (5-1)

g = C'x, 0< fi(ai)/oi <kg, i=1, ..., m

»

By analogy with the previous work, a Liapunov function is chosen to be

of the form

V=x"Px + f— f(z) "B dz (5-2)
0
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where B = diag (Bl, Boy « ¢ Bm). Taking the time derivative of (5-2)

glves
V = x"(A'P + PA)X - 2x'PBf(0) + £(c)‘F o (5-3)
Substituting for é glves
V - x'(A'P + PA)x - 2x'PBf(g) + £(0) 'R(C'Ax - C'Bf(0))
Writing -V and adding and subtracting the term f'(0) (o - Knlg(g)) gives
-V = x'Qx + x'(2PB - A'CR)£(0)
+ £(@) "BC'BE@) + £@° (¢ - KTME(D) (5-4)

where K = diag (kj, ky, « « ., k). Letting £(0)'(c + K'£(0)) = N ()

and rewriting (5-4) gives
WV = x'Qx + x'(2PB - A'CB - C) £(0)
+ £@ GECB + B + KD £()
+ N (5-5)

The symmetric part of the quadratic form £'BC’Bf is used, since a
quadratic form is completely specified by its symmetric part.
In a manner completely analogous to the previous work, it is

desired to put -V in the form (Sultanov 1964)
-V o= (Qx + TE(@))T (Qx + T£(9)

+ x" € Dx + A\ (0) (5-6)
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where Q2 is an n by m matrix. Multiplying this out gives
-V = x7Q,08x + 25'Q;TE(D) + £(0) 'T'TE(o)
+ x' € Dx + A (9) (5-7)
Comparing (5-7) and (5-5) results in the following set of equations
Q = Q,Q} + € D = -(A"P + PA) (5-8)

2Q,T = 2PB - A'CE - C (5-9)

1

T'T = %(Ec"a + B'CA) + K~ (5-10)

In oxrder for the first three terms in (5-5) to be a positive definite
form in x and £, it is necessary, but not sufficient, for the matrix
T'T to be positive definite., Therefore, if (5-8) and (5-9) can be
solved for Qy and P > 0, then V and -V exist and are positive definite,
and the system (5-1) is absolutely stable. The conditions for the
existence of the solution of (5-8).and (5-9) can be found with the help
of a lemma, which is an extension of Lemma 1 of Chapter 3. The
statement and proof of this lemma follows next.

Lemma 2: Given a stable, n by n, real matrix A; symmetric,

n by n, real matrices D > 0 and R > 0; n by m, real matrices

G of rank m and He 0; an m by m, real matrix T'T > 0; and

scalars € > 0 and p, where o 1s such that the right hand side

of equation (aa) below is negative definite; then a necessary

and sufficient condition for the solution as a symmetric, n by n,

real matrix P > 0 and an n by m, real matrix Qo of the system

PA + AP & - Q2Q§ - €D - R (aa)

QT = PG - H (bb)
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is that € be small enough and that the matrix

~1 -1%

T'T + 2HeH'A,, ra,"! ¢ (1)

G - oG’A,

is positive definite for all real w.

The notation HeM means the Hermitian part of the matrix M,

Proof of Necessity

The proof again starts by wusing the identity
AP + PA = - (PA, + A *P) (5-11)
in (aa). This substitution results in the equation
PA, + A¥P = Q,Q3 + oR + € D (5-12)

3
(5~12) is premultiplied by G“Aw'1 and post-multiplied by Aw'lG

giving
-1 -1 -1% -1
G“Aw PG + GUPAw G= G'Aw QzQiAw G
-1 o
+ oG'A, RA, G+ ¢ G'A, ~ DA, G (5-13)
Using (bb) to substitute for PG gives
-1% -1% -1
G'A, Q,T + G'A H+ T'QA, G

1% - - 1% i
1% Q034,716 + p6'a, "1 ra,"lc

+H'A,716 = ¢A,
TS
+ec'a,”t ma~le (5-14)

Rearranging terms gives
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1

1y -1 N -1
2nen’A," 16 - 06'a,"1" ra,lG

1 B} .
= 64,7 Q,Q0a, 716 - 2HeT'qa "le + 4 (5-15)

The term A = eG'Aw'l* DAw’IG is positive definite. To see that this is
true, first recognize that, as before, D; = Aw-l* DAw-1 is positive
definite 'since D is positive definite. Since D; is positive definite,

it can be written as the product of two nonsingular matrices E'E so that
G'DyG = G'E'EG. E is an n by n nonsingular matrix and G is an n by m
matrix of rank m < n . Therefore, the vector x = EGy is only zero if y

is zero, and x'x = y'G'E’EGy is greater than zero for all y % 0 and equals
zero only for y = 0 , so that G'E'EG 1s positive definite. Therefore,

-1
DA, "G = A is positive definite.

€G'A,
Adding TYT to both sides of (5-15) leads to

TT + 2HeH'A,"1G - o ¢'a,~1* ra,"1G

= (Q}A, 7' - DT (@i, le - ) 4+ (5-16)

But if A is a complex matrix, then A*A is at least a non-negative definite
Hermitian matrix. Therefore, the right side of (5-16) is positive de-
finite so that the left side must also be positive definite. The left

side is just (#4) so that the necessity of that condition is proved.

Proof of Sufficiency

1%

- -1 - - -
The matrices T'T + 2HeH'A "G - pG'A "1 Ra,"'G and ¢?a"1" pa-lg

are positive definite for all w . The value of € can always be chosen
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1

small enough such that the matrix T'T + 2HeH“Aw-1G - oG'Aw*-lRAw— G

- GG“Aw* lDAw-lG is also positive definite.

Let a(s) = det Ag which is a real polynomial with leading co-
efficient unity, The elements of the last three terms of the above ma-
trix all have the term l/a(jw)a(-jw) in them, coming from the Aw"1 and
Ay~ * terms. The above matrix is also positive definite and Hermitian,
and, as indicated above, it can therefore be written as the product of

a complex matrix and the adjoint of that complex matrix. Therefore,

the matrix must take the following form

- Rt
T'T + 2HeH'A," 16 - oG'A ¥ 'Ra,"1¢ - ecta Y pa,"le

1

1 VGu)DE (T + 200 V(jw)) (5-17)

a(jw)

= (T +

By analogy with the previous work (i.e., Lemma 1), the matrix ;z%;y V(jw)
is set equal to -QiAw-lG. This leads to a set of equations which can be
solved for the elements of Q,- Once Q2 is known 1t can be used in (aa)

to find P, which is positive definite by Liapunov's theorenm.

By going back to the necessity proof, it can be shown that QZ’

defined as above, satisfies (bb). Substituting the expression -Q%Aw-lc
into (5-17) gives
3 + -
T'T + 2Het’A,"1G - oG'A,"L'Ra,"16 - eG?A,"1 Da,"le
- =+ -
= (T - Q34,7107 (T - ja,71o) (5-18)

Performing the multiplication on the right hand side and cancelling the

T'T terms gives
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-1% 1%

RA,~1G - e6'A ~1% pa,~lc

2HeH'A,”1G - 0G’A,
= 6'a,"1* Q034,716 - 2HeTi0ia ~lc (5-19)
Using (5-13) in (5-19) gives
2HeH“Aw'1G - leAw-l* RAw'lG . GG“Aw’l* DA -1G
= "™ b + c'ea,"le - oot ra,tle
- ecia ¥ DA, 16 - 2HeTQlA,"l6 (5-20)
Cancelling the proper terms and rearranging the equation gives
2HeH'A,"1G + 2HeT'Q}A,"1G - 2HeG'PA ~1G = 0
or
2He (H' + T'Q} - G’P) A “lg =0 (5-21)
Since Aw-lG # 0 and has rank m, (5-21) can only be true if
H' + T"Q% -G'P=0

Or, by taking the transpose and rearranging,

Q2T = PG - H (bb)
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Therefore, the Q, matrix satisfies (bb), and a solution Q, and P to (aa)

and (bb) has been found using (##), so that this ccndition is sufficient.



-

T T wm——"——

77
Now that the lemma has been proved, equations (5-8)-(5-10) can
be considered again. Comparing (5-9) with (bb) and repeating (5-10)

gives the equations
G=B o=0

H = %(A“CB + C) (5-22)

TIT = %(BC“B + B'CE) + K™t

Substituting (5-22) into (4##) gives the condition for (5-8) and (5-9)

to have a solution Q2 and P > 0., This is
1 gee 165 -1 =~1sp =1 ea -1
E(BC B + B'CR) + K~ + He(BC'AA, "B+ C’A  'B) >0 (5-23)

But
A= JuI - A,

and

1 -1
AA T = JuAy -1
Substituting this equation into (5-23) gives

Z(BC'B + B°CB) + K + He(BC' jua,™!B - BC'B + ¢'4,71B) > 0
(5-24)

But He(-BC'B) = - %(EC'B + B7C§) so that the final result is

KL+ He(I + JuMC'A, B > 0 (5-25)

Therefore, given Cqu-lB and K, if a E = diag (By, . . - By can be

found such that the matrix on the left in (5-25) is positive definite,
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then the system (5-1) is absolutely stable.
Other work on this type of system of equations has been done by
Popov (1960) and Ibrahim and Rekasius (1964). Their results are essen-
tially the same as those obtained here, but the method of derivation is
considerably different. Their main theorems are presented here.

Theorem of Popov: If, being given the system (5-1), with A
stable, one is able to find three diagonal matrices P, Q, K
possessing the following properties:

1. The diagonal elements pj and ky of P and K are positive
2. The Hermitian matrix

Hw) = —;—(G(m) + @) (5-26)

where

G() = -~ (P + jwQ)C'(juI - A) "B + prL

and where G*(w) 1is the adjoint of the matrix G(v),

satisfied Sylvester’s conditions (that is to say is

strictly positive definite) whatever the real number w.
3. The symmetric matrix

S a - %QC'B - %(QC”B)' + PK”

(5-27)

1 (5-28)

where (QCB)' is the transpose of the matrix QC'B,

satisfies Sylvester's conditions,
From these conditions, the trivial solution of the system (5-1)
is asymptotically stable in the large whatever the function
f(y) ,whose components fj(yi) satisfy the inequality

0 < f3(¢)yy < kiyiz
This theorem can be made to look exactly like the results derived above by
premultiplying (5-27) and (5-28) by Pl and letting P'lQ = ¥, Then
(5-26) is the same as (5-25) and (5-28) is the same as (5-10).

Theorem of Ibrahim and Rekasius: The system (5-1) is globally
asymptotically stable if there exists a non-negative diagonal

{ 4 a N aemd 1T L.al Al e
matrix Q, and two positive diagonal matrices G and H such that

1. - £(9)'QC'BE(e) < 0, £(0) # 0

2. the elements of GH-1 gatisfy the inequality
0 < oif(qi) < gioi/k

3. the matrix inequality
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T(jo) = H + %(QC”A + GC"Y (JoI - A) 1B

+ B'(-juI - AL (qc'a + acH') > 0 (5-29)

holds for all real w,
4, A 1s asymptotically stable.

Note that the B matrix here has the opposite sign of Ibrahim and Rekasius'
paper. This theorem requires some manipulation before it can be compared

with the previously derived results. Rewriting (5-29) gives
H + He (QC'A + GC')A,"IB > 0
H + He (QC'AA,"1B + 6c'A~1B) > 0
But AAw'1 = ijw-l - I . Therefore
H + He(jwQC'A,"1B - QC'B + Gc*A_~1B) > 0
H + He((juQ + G)C’A,"'B - QC'B) > 0

Taking out the QC'B term and letting G = I gives

e ex =1 N

~mV e 2 vy S a2 & N - . T - Vo)
H - HeQC’B + He(I + jwQ)T'A,"" 3 > © \2=3V)

Letting H = K-l and Q = B gives the same notation as the previous work.
If (5-30) is compared with (5-25), it is seen that there is an

extra term present which is not in (5+25). This term 1is required to be
negative semidefinite so that it makes (5-30) a more restrictive criterion
than (5-25). The reason is that the first requirement of the theorem

1s that - £'QC'Bf be less than or equal to zero. This is a condition

which is not required by (5-25). The analogous condition in the
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development of (5-25) 1is (5-10), that is,

%(EC'B + B'CR) + k™15 o (5-10)

This inequality can hold true even if ECVB + B“CE is not positive semi-
definite. Since B = Q, then QC'B + (QC®B)° is not required to be positive
semidefinite. An example of a case where the first condition of Ibrahim
and Rekasius? theorem is violated, so that their theorem cannot be applied,
is given later. However, (5-25) is able to give results in this case.
Actually, the criterion of Ibrahim and Rekasius can be derived

from Lemma 2 by writing V as
-V o= Q) x + TE@) Q) x + TE@)

+ x%Dx + £(o)' BC'B £(g) + A(0).

-1

This does not change the G and H matrices in (5~22), but now T'T = K
Therefore, applying Lemma 2, with the additional restriction that
£'EC'B§ is positive semidefinite, results in 5-30.

5

Consider the system whose block diagram and equations are given

in Fig. 6. The stability criterion given by (5-25) is

-1 N _ =1 _ ‘ _
K™ + He(IL + juF)C’A "B >0 (5-25)

Calculating C"Aw-lB gives
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X1 Xy
+’Q o f1 S 1 £ 1
- oy s+l 7 o, s+2

a) Block Diagram Defining the State Variables

x = Ax - Bf(9), o = C'x

— ] — [
-1 0 -1 0 0
A= B = cl =
0o -2 0 -1 1
L _ - _ .

b) System Equations

Fig. 6. System of Example 5-1.

1]




1
0 Juwt2
-1
C'A, B =
-1
ju+l 0
L _
— -
1+jw61
0
w2
(I + wa)c'Aw’lB =
a +jwBy .
jut1
| _](1) __j

Substituting this into (5-25) gives the following as the stability

criterion,
1 l(l+jw81 _ 1-jw82
kl 2 24jw 1-jw
> 0
1 + 1
() o
- pu—
or
[~ ) -
1 1 (61 - Pz)w + (31 -2+ ZBz)jw -1
kp 2 (2 + §u)(L - jw)
> 0
1 * 1
2 ko
L —
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Setting the coefficient of uz and jw in the numerator of the frequency

dependent element to zero gives

By - By =0, By =By

2
B1 =2+ 28, =0, By = 3= Bo
The matrix 1s now
1 -1
kl 202 4 ju) (1 - jw)
> 0
-1 1
2(2 - ju) (1 + jw) k2
| _

Applying Sylvester®s condition gives

1 1
- > 0

koky 4(4 + wz)(l + wz)

The frequency dependent term has its largest magnitude at « = 0 sc that
klkz < 16 1is sufficlent for the system to be stable.
Actually a much better answer can be obtained from a Liapunov

function which is just the sum of the integrals of the two nonlinearities

with g, =8, . 1If By = 1, then in this case

V= - ZfI(Gl)Ul - f2(62)02
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and the system is stable for all nonlinearities which lie in the first
and third quadrants. This result cannot be generalized since this type
of V-function usually results in indefinite G-functions.

If By =Ry = 1 is put into the stability criterion matrix, in-

stead of 81 = 62 = % , the result 1is

— -
1 -1
kg 2(2 + jv)
> 0
-1 _L
2(2 - ju) k,
L. —
or
1 1

> 0

kiky 4(4 + w?)

or kik, < 16 as before. It has been seen that, by making P = O, an
infinitely better result is obtained. Why doesn't this result appear
from the stabllity criterion? The answer to this question is obtained
by looking at (5-8), (5-9) and (5-22). The stability criterion gives
necessary and sufficient conditions for the solution of (5-8) and (5-9).
By making P and Q) zero, equation (5-9) becomes H = - A'CR - C = 0.
This is never true for 8, =B, = 1 so that P = 0 is not a solution to

the set of equations.
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Example 5-2
Consider the same system as Ibrahim and Rekasius; the block
diagram and equations are given in Fig. 7. Again the stability

criterion is given by (5-25).

K™l 4+ He(T + jup)c'a,"!B > 0 (5-25)

The term Aw"1 is

— —

(Jut3) (Fut2) 0 0
A"l L 0 (jurt5) 2 (Gw5)
w (j’.'+5) (j(l)+3) (j(u+2) J J

0 -6 (jw+5) Jw(Gu+s)

Calculating C“Aw—lB gives

0 1+4w

) (je+3) (Ju42)
C’s, B =
_ 1
o5 0 _J

This equation is multiplied by (jwB + I) giving

— —
(1+3w) (1+jwpy)
(Jut3) (jut2)

0
(JwB + I)C“Aw-lB =
-jm82+1

i ju+5 J

Putting this quantity into (5-25) results in

o




T

i e T —— —

+

El 1 N| fg s+1
oy s+5 9, (s+2) (s+3)
a) System of Ibrahim and Rekasius,
X p!

1 3 2
51 1 I 1 1 +
o s+5 gy - s ] N

5
6

b) Block Diagram Defining the State Variables.

x = Ax

¢) System Equations

Fig. 7.

- B_i_f_,

g

C'x

System of Example 5-2.

86
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[ 1 1 (1+j0) (l+jwﬁl) l-ijZ
ky 2 T3 Ger2) T s-jw
> 0
1 * 1
20 ) K, |

This can be rewritten as

1 1 (9‘1'82)jw3+(2'481'582)w2+(551+652'1)j(*)‘]-
ky 2 (jut3) (ut2) (5-jw)
> 0
1 % 1
Lo -

The matrix C'B in this example is skew symmetric so that if
By = 82, then the expression RC'B + B'CS = 0. The Ibrahim and Rekasius
criterion is identical to (5-25) in this case.

Ibrahim and Rekasius set kl = k2 = 6 and £, = 82 =1 getting
&

1 5
1 O
6 2 (jut3) (Jut2) (5-3w)
> 0
1 * 1
2 C ) 6
| .
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Applying Sylvester’s conditions to this matrix gives

1 (1-w2/2)2 + 2502/36 S 0
36 4 (0244) (W249) (W2425)
or
(3 - 3.2y% 4 25,2
1- 2 4 0

(W244) (0249) (w2425)
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This inequality is true for all v so that the given system is absolutely

stable for nonlinearities in the sector [O, 6] .
Instead of picking the Bi, they can be calculated by setting
the coefficients of the jw3 and w? terms to zero. This gives B1= 82

and 2 - 9f; = 0 or Py = 2/9. The matrix is

1 1 13j0/9 + 1
Ky 2 (Gt3) (Ju+2) (5-30)
> 0
1 * 1
Lo =
L i
Applying Sylvester’s conditions gives
1 169u2/81 + 1
- > 0

k1Ko 4 (0244) (w249) (w2425)

The maximum value of the frequency dependent term is approximately

1/1290. Therefore, if kjky < 1290 or ky = ky < 35.8, then the
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system is absolutely stable. This is a considerable improvement over
the results of Ibrahim and Rekasius. However, it leaves room for
lmprovement as a simple check shows that the linearized system is

stable for all positive gain.

Example 5-3

Consider now the same system as in Example 5-2 except that the
s + 1 term in the numerator is missing. The block diagram and equations
are given in Fig. 8. The term EC'B in this case 1s indefinite, and the

theorem of Ibrahim and Rekasius cannot be applied. The term C'Am-lB

is
- -
0 1
(Jwt3) (Ju+2)
Cc qu-lB -
.__:_].‘__.. 0
(ju+d)
~ —

0 (Jupy-1)

(3o+2) (3u+3)
(Jup-1)C'A ~1B =

-ijz-l

jurks
- -

Applying (5-25) gives the following as the stability criterion.

— —

11 Jopg-1 L+jeB) ]
ki 2 [(3u2) (Jo+3) 5-jw




+ 01 1§ 1 |72 £ o
- ;2 | g; s+5 X1 7 - s s
5
6
a) Block Diagram Defining the State Variables
X = Ax - Bf(g), o =C'x
-5 0 0 -1 0
0 -1 0
A= 0 0 1 B = 0 0 ¢! =
1 0 0
Lo -3 Lo - -

b) System Equations

Fig. 8. System of Example 5-3,.
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This inequality can be rewritten as

B 2 3 !
1| WP -1-58 )0+ (6468 +51 ) ) ju=-Py Ju

1
ky 2 (jut2) (Jut3) (5= jw)

* 1
) k

n 2 _

N[
Pam

Again setting the coefficients of jw3 and w2 to zero gives 89 = 0,

B1 =1, and the resulting matrix is

poa— —

1 1 11jw+1
ky 2 (ju+2) (Jut3) (5-jw)

_ 2 N
Applying Sylvester's conditions gives
1 (12102 + 1)

1- 1. - 2 n N > 0
BIR2 404 (W H9) (LW 4+25) .

The maximum magnitude of the second term is approximately 1/24.8 so that
the system is absolutely stable for k1k2 < 24,8, A check on the linear-

ized system shows that kjk, must be less than 280 for stability.

5.3 The Time-Varying Case

Once again sufficient conditions for the time-varying case can

be obtained by just considering the quadratic Liapunov function. The
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derivation of the previous section goes through with g = 0, and there-

fore, for the system

Z;.. = Ax - Bf(g,t)

= C'x (5-31)

la

the condition for absolute stability 1is
-1 -1
K + HeC'A, B > O (5-32)

The case where the integrals of the time-varying nonlinear
functions are retained in the Liapunov function is also amenable to
treatment in a similar manner as in Chapter 4. The Liapunov function
is

g
vV =x"Px + f £'(z,t)3dz (5-33)
0

For this case -V is nothing more than (5-5) plus the time derivative

of the integral term, or

= x'qx + £{g,t)’

<3 .

The term A\(g,t) = f(o,t)'(c - K-lﬁ(g,t)) > 0 has been added and sub-

tracted.
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The three cases are considered again so that the inequalities

are
91, (z4,t)
Case I / 1747 I 2 (5-35)
y <t dzi < ai oy
0
T13f, (24, t)
Case II Jf ——iszii——- dzy < aiIcifi(Ui,t) (5-36)
0

g
ro1df (24, t)
Case III / ——ijzli——- dz; < u{IIfi(oi,t)z (5-37)

0

In each case the summation of f; multiplied by the right hand
side of the inequality is added to and subtracted from v giving the

following results.
Case I -V = %' (Q-CaC") x
+ f(o,t)' (2B°P - BC'A - C)x

+ £(o,t) " (BCBR ) £(a,t) + Mg, t)

—_ T 3f(z,t)"
+ (o'Bo - /F _:%T_)— B dz) (5-38)

0
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Case II -V = x'Qx + £(o,t) "(2B'P - BC'A - C! - ;5@“)5

+ £(o,t) *(BC'B + K 1) £(a,t) + r(g,t)

2L -
+ (g'Ba £(g,t) ’o/ﬁ ééé%isll B dz)  (5-39)

Case III V= x'Qx + £(g,t)(28'P - BC'A - CV)x

1

+ £(g,t) "(BC'B + K™~ - BA)f(g,t) + A(g,t)

g '
e Tsen - [ g,

0 (5-40)

N

where E& = diag (Blal, Bolo, « « o, Bmom). The last term in all
these cases 1s positive,
Similar to the previous development, the expression for -6 should

be of the form

-6 = (Qéi + Tﬁ(g,t))”(QégﬁTﬁ(g,t)) + x%¢ Dx + AN(o,t)

4+ (Positive term) {5-41)

Comparing (5-41) with (5-38), (5-39) and (5-40) leads to the following

set of equations.

Case I Q - CROC’ = Q,Q) + €D

2Q,T = 2PB - A’CF - C (5-42)

T'T = L(FC'B + BICT) + k!
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Case II Q QZQi +€eD

2Q,T = 2PB - A'CB - C - paC (5-43)

T'T 1

%(EC'B + B'CB) + K~

Case III Q QZQE +eD

2Q,T = 2PB - A“QE -C (5-44)

1

T'T %—(EC'B + B'CB) + K" - Bu

Applying the Lemma 2 to each case results in the following

stability criteria.

-1 P | S L e |
Case I K™ + He(jup+I)C'A,""B - B'A,"" CF.C'A "'B > 0
(5-45)
Case II K™} + He (Jup+I48()C'A "1B > 0 (5-46)
Case III k1 BO + He(j«?-}-I)C“A“-lB >0 (5-47)

criteria of Rekasius and Rowland (1965), which are given in Chapter 4.

Example 5-4

The same example as 1 is worked except that now
the nonlinearities are assumed to be time-varying. The system equations
are given in Fig. 7. The stability criterion given by (5-32) is 1llus-

trated first.
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K1 + Hec'a,"1B > 0 (5-32)
- -
0 1+jw
) (jort3) (Jut2)
C'A, B =
-1 0
Jw5
L _
~ -

1 1 1+jw _ 1
k, 2 (jo+3) (Jut+2) 5-juw

K™! + HeC'A, 1B =

Applying Sylvester's condition gives

1 (202-1) + 2

- 0
kiko 4(Ww%H25) (1244) (H449) ~

The maximum magnitude of the frequency dependent terms is approximately
1/80 so that klkZ < 80 is sufficient to insure that the system is stable.
To illustrate the second type of stability criterion, the time-

varying nonlinearities are assumed to have specific forms. Let

fl(cl,t) = (1 - cos t) gl(ol)

fz(cz,t) = (1 - cos 2t) gy(oyp)



where 0 < gy(04)/oy < ky/2. The partial derivatives with respect to

1

time are

ofq
Sg = sin t gl(ol)

afz
St = 2 sin 2t g9 (o9)

Using the first type of constraint gives

The

The

The

2
0'1 klo'l
/ sin tgl(zl)dzl < T— = 0110'12
J
0
2
o k,o
2
/ 2 sin 2tg2(22)d22‘5 ; 2 - 02022
o

stability criterion is given by (5-45) and is

i* 1

-1 cpoc'a," B > 0 (5-45)

K~ + He(jwé41)c'Aw’1B - B'A,"

term K~1 + He(ij+I)C'Aw'1B has been calculated in Example 5-2.

-1 — -
term B“Aw 1 CBQC“Aw 1B can be calculated giving

Fokoy o
2 (w2+25)
pa "Uomacta “lp
w CRaC'A, "B =
E’lkl Go 2+l)
0 4 (0 244) (0249)
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Using the results of Example 5-2, that is B =By = 2/9, gives the
stabllity criterion as
1k 1 (3 §u/9 = 1) 4
> 0
Ky (2
1 ( )1- l‘._ — 1 )
2 Ko 18 244) (249) _J

Applying Sylvester's criterion to this matrix gives

1L__ 5

ki 9(w2425)

and
1 _ 1 _ (u2+L)
kiky  9w2425)  18(~244) (w249)
kq ko (02+1) 1690:2/81 + 1

162 (0244) (0249) (02425)  4(w2+9) (w2+4) (L2425)

In the first inequality the frequency dependent term is largest when

w2 = 0 so that
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In the second inequality the negative term which has the largest magni-
tude is 1/9(w2+25). The frequency at which the magnitude is largest is
wz = 0, It can be shown that the frequency at which the sum of the
negative terms has its largest magnitude is also zero so that, if the
inequality is satisfied at zero, it is satisfied for all «. Letting

w2 =0 2gives

1 1 1 kiko 1
Kk, ~ 225 " 648 T 162(H)(9)(25) 4 (B (25)

0

Setting this equal to zero gives

4

(k1kp)% - (903.5)kjky + 14.6 x 10% = 0

and solving this gives kjkp < 216.7. Therefore, the new criterion gives

a substantial improvement over the previous case since, in that case,

kiko < 80 was the best that could be done. The criteria (5-46) and (5-47)
cannot be used with the assumed nonlinearities because the values of o4

are infinite,

5.4 The Particular Case

It does not appear that the general case of m nonlinearities with
a zero eigenvalue in the A matrix can be handled by these methods. Of
course the system equations must be manipulated so as to remove the
equation which gives the zero esigenvalue, getting a matrix Al’ of order
n-1 by n-1,and an additional é equation, as illustrated in Chapter 2,
(2-5). A simple example is worked which shows that a Liapunov function

of the proper form does not exist for a particular problem, Therefore,
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a general theory does not exist, since if it did; it could solve that
problem,
The system and system equations are given in Fig. 9. The most
general quadratic form of the two variables plus the integrals of the
two nonlinearities is used as the Liapunov function.

2 2 r¥
Ve % x2 + btx + %— + BIK/F f{z)dz + By / g(z)dz
0

The time derivative is

Vo= -ax? - Bex - (8,-b) xg(x) - bEE(E)

+ (81-B)E(e)g(x) - axf(t)

The only definite term in ¢ is -b:f(t), but there is a term btx which
is indefinite. Since f(t)/t can have any value between 0 and kl, the
indefinite term can be positive and greater in magnitude than the
negative definite term. However, since in the analogous one nonlinear-

ity case there is no cross term in ¢ in the Liapunov function, setting

5 =0 hen

Adon
aon y LU

n An +hiec rcaco
nge In Tnls case

there is no definite term in % or £(t) at all, Therefore, a Liapunov
function of the proper form does not exist for this problem, since the
most general quadratic plus integral form of Liapunov function was

considered.

A Liapunov function which works for this simple system 1is
& e
V= f(y)dy + g(z)dz
J J
0 0
Vo= - g(x)x




0 |-

+ N 1 g{x)
"% s+l X

£8)

a) Block Diagram Defining the State Variables

£ = g(x), 0 <e(x)/x <ky
x = -x - £(¢), 0<f(£)/t <k

b) System Equations

Fig, 9. System with Two Nonlinearities and a Zero Eigenvalue.
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Here é is semidefinite, but absolute stability is proven for time invari-
ant nonlinearitiee. However, this Liapunov function cannot be generalized
since, as before, this type of Liapunov function leads tc an indefinite
& in many cases.

There is a generalization of the simplest particular case which
is amenable to treatment by the above methods. Letov (1961) considers
this case for two nonlinearities in what he calls systems with two
actuators. This would seem to be systems with motors, etc. operating in
parallel. If m nonlinearities are considered, his equations can be

generalized to be of the form

y = Ay - Bf
£ = £(0 (5-48)

= 07 -

where A has all its eigenvalues in the left half plane. This set of
equations can be put into a form similar to (2-5) by using the trans-
formation

X = Ay - BE

The equations become

Ax - BE = ix - B£(2)

1% .
]

£ = £(0) (5-49)

C;(A"lz +a7lBe) - R

la
I

la
]

C'x - RE
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where these equations are now in a form which is analogous to (2-5).

The matrix R is m by m while B and C are n by m. The Liapunov function

is also analogous to Vy of (3-8) and is

g
Ve x'Px 4+ £RURE + | £(2)'Bdz (5-50)
0

Taking é gives
V = x'(A'P + PA)x - 2x'PBf(c) + E'RPLRE + £'RLRE
+ £(0) "B (5-51)
Substituting for t'R’, £ and ¢ and collecting terms results in
V = x"(A'P + PA)x - x"(2PB-CL'R-CLR - A'CP)£(0)

~£{g) *(2C"B + FR")f(g) - ¢'LRE(Q) - £(DR'Lg (5-52)

Adding and subtracting kl(g) = (o0 - K_lﬁ(g))'LRi(g) and \y(g) = £(e)'R'L

(o - K—lgﬁg)) to (5-52) results in the equation
-V = x'Qx + x"(2PB-CL'R - CLR - A°CF)£{9)

+ £(3)(3C°B + PR + K™'LR+R'LK 1) £(0) + Aq(0) + Ay(0)

(5-53)

The term £9(BC'B + FR + K™! LR + R'LK™1)f should be positive definite, and

therefore the svmmetric part of the matrix must also be positive
definite. Since -V should be in the form given by (5-6), the follow-

ing equations result.
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Q=QQU+€D {5-54)
2Q,T = 2PB - CL'R - CLR - A’CH (5-55)
ot r=Yoll = -1 [ I -1

TIT = He(BC'B + BR + K "LR + R'IK ) (5-56)

The use of the Hermitian part of the matrix in (5-56) comes from the
fact that the Hermitian part is the symmetric part for real matrices.
The necessary and sufficient conditions for the solution of

equations (5-54) and (5-55) to =xist as matrices P > 0 and Q2 are that

TOT + 2HeH'A,"2G > O (#4)
where
_ loon + lorg s Lao
H = 5CLIR + 5CLR + 5A'Ct

Substituting G, H and T’T into (##} results in the inequality
_ 21 -1
He (PR + K™'LR + R'LK °)
+ He(R'L + R'L' + jDC'A™H B > 0 (5-57)

Using the fact that He(R'L + R'L' + juR)R/jw = HeBR gives the result that
the system (5-49) is absolutely stable if matrices E and L can be found

suzh that the following matrix inequality holds for all real w.
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He(K’lLR + R“LK-I)
+ He(R'L + R'L' + ng)(C“A;lB +R/jw) > O (5-58)

Consider the special case where R is a symmetric matrix. Let

2LR = I. The stability criterion (5-58) becomes

Kl 4 He(r + JuF) (C'A7IB + R/Jw) > 0 (5-59)

For the case of one nonlinear element, (5-59) reduces to the criterion
for the simplest particular case given in Chapter 3. By putting

2LR = I in (5-50), it is seen that R must be positive definite if V is
to be definite. This is analogous to y > O in the single nonlinearity

case of Chapter 3.

Example 5-5
Consider the system given by the block diagram in Fig. 10. The

system equations are

Yy = Ay - Bf
£= £

where
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b) System Equations

Fig. 10, System of Example 5-5.

Yy €1 S
+ 1 fl 1 1
- s+l 01 s
+f;
y £ £
) 2 | £ 2 | 4 2
- s+2 0'2 S
a) Block Diagram Defining the State Variables
y, =V, - 28 - &
= - -2 -4
Yo T Y, T2 T,
El = f(yl)
52 = f(}'z)
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Making the transformation x = Ay - Bt gives

x = Ax - Bf(0)

£ =£(9)
g=y = A'lgc_ + A B = C'x - RE
where
-1 0] 2 1
¢t =4l a , A"l =R =
0 -1 1 2
2
L ~d
The stability criterion is
"1 s q "‘1 ].
K" + He(I + juR)(C°A, "B + j— R) >0 (5-59)
W
ax =1
The term C'A, "B is
- 1]
Jul jul
coa,” !B =
-1 -2
L —
[ !
juw(ju+l) Jw(jutl)
ca, !B+ Lga
Jw
2 _ 4
Fw(jut2 Jw(ju+2)
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2(1+jw81) l+ijl
Ju(jw+l) ju(3uw+l)
= 0p =lpg o 1 oy
(I + jup)(C Aw B + ij) =
2(1+jw82) 4(1+jw62)
R
Taking the Hermitian part of this gives
2(281-2) ) )*
w§+ 1
He (I+JwB) (C'A ~!B + LR) = 1
w jw 2
(ju42) (1-jw) Wi 4

If By = 282 = 1, this becomes

1

He(I + juE)(C'A "B + =R) = ©
Jw

Therefore, the stability criterion is

k1 > o

so that the system is stable for all positive ki.
The above results say that Q2 and P must be zero. In a similar
manner to the first example in section 5-2, this implies that H = CLR +

%A'CE = 0, The proper quantities are put in this equation to see if P

= 0, Q, = 0 is really a solution of the set of equations (5-54) and (5-55).
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The result is

| CLR + %A'CB = C + A'CE

since 2LR = I.

1 ol [-1 o] [-1 R 0]
+
0 -1 0 -2 0 -1 0 %
L 2] _ 4 L 2 | L ]
[ 0 1 0 |
= + =0
1 1
0 T2 0 2
b - - —d

Therefore H = 0 is satisfied so that P = 0, Q; = 0 1s a solution to the

set of equations. This should be compared with the results obtained in

Example 5-2,

5.5 Conclusions

In this chapter frequency domain stability criteria are obtained
for systems with more than one nonlinear and/or time-varying element.
This 1s accomplished by first proving Lemma 2, which is a generalization
of Lemma 1 of Chapter 3. Lemma 2 states that a matrix, which is a
function of frequency, must be positive definite for all frequency if
a set of algebraic equations is to have a solution. In the case where

the matrix is one by one, Lemma 2 reduces to Lemma 1.
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Lemma 2 is used in conjunction with the Second Method of Liapunov
to obtain stability criteria for the principal case of systems with more
than one nonlinear and/or time-varying element. In the case where
there is only one nonlinear and/or time-varying element, these criteria
reduce to the criteria given in Chapters 3 and 4. The criterion for the
time~-1invariant nonlinear case is shown to be equivalent to the criterion
obtained by Popov (1960) and better than the criterion obtained by
Ibrahim and Rekasius (1964). The criterion for the time-varying case,
which extends the work of Rekasius and Rowland (1965), has not been
obtained previously.

The particular case of systems with more than one nonlinearity
is discussed, and a stability criterion is given for a special particular
case, Again, if there is only one nonlinearity, this case reduces to the
simplest particular case of Chapter 3. The general particular case does
not appear to be manageable by the methods of this chapter.

This completes the development of stability criteria for systems
with more than one nonlinear and/or time-varying element. The next
chapter contains concluding statements and indicates areas of further

work on this subject matter.




Chapter 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

6.1 Conclusions

The absolute stability of nonlinear and time-varying systems
is studied by use of a Liapunov function made up of a quadratic form
plus the sum of the integrals of the nonlinear terms. The frequency
criterion of Popov is extended by extending the matrix-inequality
method of Yakubovich. This criterion is shown to be necessary and
sufficient for the existence of the Lurie type Liapunov functions, and
it is generally easier to use than the Liapunov approach. Extensions
to time varying systems are given.

The objection can be raised that the results are not too good
since it was shown that for certain problems there are other V-functions
which give better results, and also that the results do not come close
to the linearized system stability region in many cases. The answer to
this objection is essentially that this is the best that can be done
at this stage of the development of the theory. There is no way avail-
able of finding the best Liapunov function for a given system. The
method developed in this work allows for a logical process of deter-
mining stability, If the frequency condition is met, 1t guarantees
the existence of a positive definite V and ~V.

In trying to find Liapunov functions for high order systems,
one of the main difficulties is that tﬁere is no easy way of testing
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high order non-quadratic or partially quadratic forms for positive

definiteness. Therefore, although maybe not giving the best Liapunov

function, the methods presented here give some results which may be

adequate for a given problem,and which also may be the only results

which can be obtained in a reasonably simple manner,

(A

In summary the main contributions of this work are:

The matrix inequality method is extended by means of proving
Lemma 2. This results in an extension of the Popov stability
criterion from the scalar to the matrix case.

By using Lemma 2, the work of Rekasius and Rowland for time-
varying system 1s extended to systems with many time-varying
elements.

Other contributions of this work are:

By using the extended frequency criteria, the work of Yakubovich
(1946¢) on forced systems is extended to systems with many non-
linearities. This 1s given in the Appendix.

Some indication is given as to when the criteria of Rekasius
and Rowland can be used to get improved results.

The work of Bonglorno, Sandberg, and Narendra and Goldwyn is
compared with the Popov criterion and is shown to be equivalent
to it.

The criteria of Ibrahim and Rekasius and of Popov are compared
with the criterion which is derived in this work for the case

of many nonlinearities.
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6.2 Further Work

There is a good deal of room for improvement and extensions of
the results which have been presented here, since only sufficient con-
ditions for stability are given by the Second Method. One way of improv-
ing the sufficient conditions would be by getting some information as to
the slope of the nonlinearity into the Liapunov functions. Absolute
stability means that the system must be stable for any nonlinearity in
the sector, no matter how violent the changes in its slope are. By in-
corporating some constraints on the slope of the nonlinearity better
results should be obtainable. Some results on this approach have been
obtained by Brockett and Williams (1965) for the case of symmetric,
monotonic nonlinearities.

Further investigations into forced systems should also prove
fruitful, since most physical systems have some input forcing function.
Also, digital computer programs to aid in the computational aspects of
the problems can be investigated.

The cases of systems with zero and pure imaginary eigenvalues
need further work, especially the cases of more than one nonlinear and/
or time-varying element. The simplest particular case of the time-vary-
ing system does not have a stability criterion which is similar to the
Rekasius and Rowland criteria. 7This also should be investigated.

Finally, there are results available for absolute stability by
means of Popov's criterion for systems with time delay (Popov and

Halanay 1962), systems with hysteresis and discontinuous nonlinearities



(Gelig 1964) and sampled-data systems

(Jury and Lee 1964).
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Applications

of Lemma 2 to these types of systems should lead to extensions of the

existing results,




Appendix A

ABSOLUTE STABILITY OF FORCED SYSTEMS

The matrix-inequality method can be used also for forced systems.

Again this is the work of Yakubovich (1964c). The system equation that
he considers 1is

x = Ax - bf(o) + E(t)

(A-1)

o= clx
where r(t) is a vector function bounded for - © <t < ® , Yakubovich
considers the case where f£(0) is discontinuous so that he can take into
account the possibility of a sliding regime. The results he obtained
are not discussed in detail here, but it is shown that the previous ex-
tensions to m nonlinearities can also be made in this case.

The system equations for the more general case are

(A-2)
o' =Cx, 0 <f (o

~r
IN
-
’—I.
qQ
(=
rh
~
o
'~
n
(wr)

The method is illustrated by proving the following theorem.

Theorem: In the system (A-2), let A have all its eigenvalues
in the left half plane, let r(t) be bounded for - ® <t < ®
and let the condition

Kl 4 necta, '8 >0 (a-3)
be satisfied for all real w.
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Then

a) any solution of (A-2) is bounded for tp St <

116

)

b) 1in the state space {}(} there is a bounded region F such
that any solution reaches this region at some time, and
for t > tg and x(tg)e F it follows that x(t)e F ,

c) there is a number p > 0 such that, for any two solutions

x;(t) and x,(t) and t > t,

- (t'to)

|§1(t) - 52(t)| < const. e 'il(to) - §2(t0)|

(A-4)

The simple quadratic Liapunov function, V = x'Px is used.

Differentiating V gives

Vo= x'Qx + x'(2PB - C)£(a) + £(0) 'K 1£(0)

+ N(0) 2x"Pr(t)

which is just (5-5) with © = 0 plus the term with r(t).

-1 .
HeC’A, B > 0, then -V can be written as

-V = (Qéi + Tf(:))“(Q;» + Tf(2))

+ x'Dx + N(g) - 2x"Pr(t)

(A-5)

£ kL 4+

(A-6)

Since the first term is positive semidefinite and A(g) is positive,

-V can be rewritten as an inequality.

-V Z Z‘_'DX

(A-7)

For any positive definite quadratic forms x'Dx and x'Px, there is a

constant pp such that x'Dx < px'Px = uV. Therefore
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V < 4V + 2x"Pr(t) (A-8)

Since r(t) 1is bounded, the term 2x'Pr(t) is going to be less than O Vl/2

for some value of &, Therefore

V< v + o vi/2 (A-9)

2
For some constant V= C, -.C + aJC =0 or C= jz . Therefore V = ;2

defines an ellipsoid in the state space. For any solution starting out-
side the ellipsoid, V is negative and the solution eventually enters
the ellipsoid. Any solution starting inside the ellipsoid must stay
inside since V is negative outside the ellipsoid. This proves (a) and
(b) of the theorem.

Writing y = X; - Xy, g4 = C'xy, gy = gy - gy and £, = £(gy) - £(gy)
leads to

Y.=?_<.]_'25_2

¥ = Ax; - BE(gy) + () - (Ax, - BE(oy) + £(t))

]
]
>
S~

£

v = Ay - Bf (A-10)
Y = Ay - Bfj

Repeating the above calculations gives

Vo= yiQy + ¥R - Of + LK R + MO (a-11)

where K-1 comes from the additional condition that
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f.(c,.) - f.(5,.)
0 < i 1li iM21 < ki
%11 ~ 924

(If o, = 0, this reduces to the previous inequality for the nonlinearity.)

2

Therefore, as before,

V() <uv@) (A-12)

This means that

+H (t’to)
V(y(t)) < const. e V(X(to)) (A-13)

so that the magnitude of y is decreasing exponentially. Therefore

lﬁl(t) - §2(t)l < comst. eﬂi(t-tO)'

x (tg) = xp(tp) | (4-4)
and the proof is complete.

It is easily seen that this theorem holds true if the f(g) in
this case is also a function of time, i.e., f(o,t). This is because
V does not have the integral term in it, so that there is no change in

the above proof 1f f(g) is replaced by f(g,t).
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Appendix B

AN APPLICATION TO THE NUCLEAR ROCKET PROBLEM

This section contains an example in which the stability theory
developed above is applied to the simplified nuclear rocket propulsion
control system which was considered by Mohler (1962). This particular
system is studied here because Mohler gives an analog computer diagram,
which is used to obtain the system equations,

The stability of the operating point of this system can be
found by linearizing the system equations, However, this procedure:
only gives stability information for some arbitrarily small region
about the operating point, By treating the nonlinear and cross-coupling
terms as time-varying coefficients, an attempt 1s made to obtain sta-
bility information in some finite region about the operating point,

The block diagram of the system is given in Figure 11. The
desired thrust F, is assumed to be constant and the actual thrust is

d

given by the equation

F = ) \/TC W (B~-1)

where <y is a constant, Tc is the propellant temperature at the core
exit, and W is the propellant weight flow rate. The compensation and

value and turbopump equations are
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Fig. 11 Block Diagram of Simple Nuclear Rocket

Propulsion Control System
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(8
I

0.1(F; - F) (B-2)

*:
|

= -2W 4+ U4 (Fd - F) vy (B=3)
where y is a state variable without physical significance.

The reactor heat exchanger equations are
- . _ }
Q= c,T, c3h(Tf Tg) (B-4)

c3h(T S T) = e W(T - T)) (B-5)

where ¢ c

3> anu c¢_ are constants, T

4 5 is the average fuel moderator

f
temperature, Tg is the average propellant temperature in the core, and
h is the heat transfer coefficient due to convection, and Ti is the

propellant temperature at the core entrance. Tg is approximated by

. Ti + T T
g =g =g (5-6)

Mohler considered the neutron dynamics to be approximated by the

average, one delayed neutron group approximation. The equations are
.o 4 .
Q = 10 (8k-.0065)Q + .1C (B-7)

Ce-.1C+Q (B-8)
where C is the concentration of delayed neutrons, Q is the reacrtor
power, and 8k 1is the reactivity. The reactivity is assumed to consist
of three parts; rod reactivity, temperature reactivity, and propellant
reactivity.

The above equations are now manipulated in such a manner that they

can be written as

% = Ax - Bf(o,t) (B-9)
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The state variables are y, W, Tf, Q, and C. Substituting for Tg in

(B-5) and solving for Tc gives the equation

r - c3hTf + TC(CA

. 3 - 4
c de + c3h/2 <,

.___ D
W c3h/-) c3hTf

-

W+ c3h/2

The heat transfer coefficient due to convection is

Therefore

The five equations are

y = 0.1 (Fy-c, VEWT, W
W= - 2w+ .04 (Fd - ¢ \/f(W)If W)+ v

1.

c.C . \ .
36 0.8 £(N)T/2)

] 1T
I.= = Q-
£ <, ¢,

f

5 = 10 (6k - .0065) O + .1iC

C= - .10+ ¢

The design condltious are
Vo= 107 1b

W o= 1.2 x 10° 1b/sec

‘ .Y
2.79 x 1C7 BTU/sec

L
[

T. = 4500° R
0

(B-10)

(B-11)

(B-12)
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By making the transformation
xSy - 2.5W (2 -13)
the first two equations are changed so that the nonlinear cross-
coupling term appears only in one of the first two equations. The

result, after substituting the coefficient values obtained from

Mohler's computer diagram, is

X = - 5W -x

W= L5W + L04(F, - 10.73 \/f(w)Tf W o+ x
T =--Q_._ ,_i ) .0’8 N N
Tp=glg- 192 T, (W5 () W (B-14)

Q= 10° (k- .0065) Q + .1c

C=-.1C +Q

where £(i) = 1/ (.02320°°% + 0.5).

These equations can now be put in the following form.

X = —51:7 - X (B-—}_S)

W- .SW+x+ a(t)w
where a(t) = .04 (Fd/& - 10.73 Vf{i)T,

. — 9 - " o

Tf 900 b(L) lf (B—'l6)
where b(t) = .10 (1 - £(W)/2)d ", and

ﬂ = 107 k(t) - .006%) Q + .LIC

(B-17)

C= - .1C +Q
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The equations 13-15, B-16, and B-17 are three sets of uncoupled,
linear, time-varying equations. The é term in (B-10) acts as a
forcing function and this equation is stable as long as b(t) re-
mains positive. The stability criterion of Chapter 4 can be
applied to (B-15) and (B-17).

Consider (B-15). At the operating point, a(t) = O.

Therefore, for changes in T, and Q, -k < a(t) < kand the Bonglorno

f

type of stability ecriterion can be applied. 1In matrix notation

(B-15) is

e
'
—
]
W
b
<

= + a(t)w (B8-18)
W 1 -5 W 1

The transfer function is G(jw) = c”A b,
L .

1 jw - .5 =5 0

G(jw) = 01 "K Y ot . (B-19)
’ 4 w+

where A = (Ju + 1)(Gw - .5) = (jm)2 + .5jw + 4.5,

Jjuw + 1 s
Guw)Z + .5jw + 4.5 (B-20)

G(jw) =

The stability criterion is

k| GGw) ]| <2

The maximum value of ‘G(jw)l = 2.2 so that k<1/2.2 = .45 is sufficient for
stability. To obtain some idea of what this means in terms of the state
variables, assume that the flow rate increases suddenly, while T, cannot

f

change instantaneously. Then
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a(t) . = .04{ B 10.73 Vi + sW)T )= -.45
min 5W f'

and Gwmax is approximately 1600 lb/sec. This corresponds to a change
in thrust of about 13 X lO5 1bs,

Equation (B-17) can be studied in the same manner as in Example 4-2,
and similar information can be obtained.

This section has presented an approach to complicated nonlinear
systems which allows some information to be determined about the
stability region at the operating part of that system., As can be seen
from the discussion of (B-15), the results are very conservative,
However, since the original equations are nonlinear with cross-coupling,

a suitable Liapunov function, which would give better results, is not

known.



Appendix C

SOME CONSIDERATIONS IN THE PARALLEL ACTUATOR PROBLEM

This section contains a brief discussion of some of the qualitative
aspects of operating devices, such as pumps, in parallel. The discussion
requires using the theoretical concept of controllability and lookiug
at some of its practical implications.

A system is completely controllable if every desired transition of
the system's state can be effected in finite time by some unconstrained
control inputs., Mathematically, this concept reduces to the linear
indepencence of certain scalar or vector time functions. The mathe-
matical details are not gone into here, but they are contained in the
paper by Kreindler and Sarachik (1964).

The simplest example of a system which is not completely control-
lable is shown in Fig. 12, where the state x can be controlled only

along (or parallel to) the line x rather than in the whole two-

17 T
dimensional state space. Kreindler and Sarachik contend that this does
not matter if one is only interested in the control of the output vy,
However, in the practical use there are definite limits on the values
that Xy and x, can attain, Therefore, if they are not controlled, then
the output of the system may also become uncontrollable.

In the case of actuators such as pumps operating in parallel,
similar problems exist. However, in the case of pumps, there is even
the possibility of one pump getting to the point where the flow is
actually going backwards through the pump, In that case a circulating

flow is set up through the two pumps as shown in Fig. 13,
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X 1 X|
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— CP—— y
+
L
X2 S X2

Fig. 12 System Which Is Not Completely State Controlled

PUMP
—_
RESERVOIR —
I \o (
\L—=— PuMP -

Fig. 13 Circulating Flow in Parallel Pump Operation
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The solution to this problem is to feed back information as to
the actual output and the output of each pump in such a manner as to
keep both pumps pumping their share. Consider for example Fig. 14 as
a possible configuration. The stability of the type of systems given
in Fig. 14 is discussed in Chapter 5 with section 5-4 being especially

pertinent.



129

+ __— ACTUAL FL
DESIRED FLOW CTUAL FLOW

PUMP |
RESERVOIR <>___ y
L w pumpP 2

DESIRED FLOW
L~ ACTUAL FLOW

Fig. 14 Parallel Pumps with Feedback
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